Javascript must be enabled to continue!
Seismic performance
View through CrossRef
Context. Asteroseismology is a unique tool that can be used to study the interior of stars and hence deliver unique information for the studiy of stellar physics, stellar evolution, and Galactic archaeology.
Aims. We aim to develop a simple model of the information content of asteroseismology and to characterize the ability and precision with which fundamental properties of stars can be estimated for different space missions.
Methods. We defined and calibrated metrics of the seismic performance. The metrics, expressed by a seismic index ℰ defined by simple scaling relations, are calculated for an ensemble of stars. We studied the relations between the properties of mission observations, fundamental stellar properties, and the performance index. We also defined thresholds for asteroseismic detection and measurement of different stellar properties.
Results. We find two regimes of asteroseismic performance: the first where the signal strength is dominated by stellar properties and not by observational noise; and the second where observational properties dominate. Typically, for evolved stars, stellar properties provide the dominant terms in estimating the information content, while main sequence stars fall in the regime where the observational properties, especially stellar magnitude, dominate. We estimate scaling relations to predict ℰ with an intrinsic scatter of around 21%. Incidentally, the metrics allow us to distinguish stars burning either hydrogen or helium.
Conclusions. Our predictions will help identify the nature of the cohort of existing and future asteroseismic observations. In addition, the predicted performance for PLATO will help define optimal observing strategies for defined scientific goals.
Title: Seismic performance
Description:
Context.
Asteroseismology is a unique tool that can be used to study the interior of stars and hence deliver unique information for the studiy of stellar physics, stellar evolution, and Galactic archaeology.
Aims.
We aim to develop a simple model of the information content of asteroseismology and to characterize the ability and precision with which fundamental properties of stars can be estimated for different space missions.
Methods.
We defined and calibrated metrics of the seismic performance.
The metrics, expressed by a seismic index ℰ defined by simple scaling relations, are calculated for an ensemble of stars.
We studied the relations between the properties of mission observations, fundamental stellar properties, and the performance index.
We also defined thresholds for asteroseismic detection and measurement of different stellar properties.
Results.
We find two regimes of asteroseismic performance: the first where the signal strength is dominated by stellar properties and not by observational noise; and the second where observational properties dominate.
Typically, for evolved stars, stellar properties provide the dominant terms in estimating the information content, while main sequence stars fall in the regime where the observational properties, especially stellar magnitude, dominate.
We estimate scaling relations to predict ℰ with an intrinsic scatter of around 21%.
Incidentally, the metrics allow us to distinguish stars burning either hydrogen or helium.
Conclusions.
Our predictions will help identify the nature of the cohort of existing and future asteroseismic observations.
In addition, the predicted performance for PLATO will help define optimal observing strategies for defined scientific goals.
Related Results
4D Seismic on Gullfaks
4D Seismic on Gullfaks
SUMMARY
New technologies are rapidly emerging helping to obtain optimal drainage of large reservoirs. 4D seismic is such a reservoir monitoring technique. The phy...
Seismic Frequency Enhancement for Mapping and Reservoir Characterization of Arab Formation: Case Study Onshore UAE
Seismic Frequency Enhancement for Mapping and Reservoir Characterization of Arab Formation: Case Study Onshore UAE
Abstract
Mapping and discrimination of Upper Jurassic Arab reservoirs (Arab A/B/C and D) in this 3D seismic onshore field of Abu Dhabi, is very sensitive to the seis...
Integrated Hydrocarbon Detection Based on Full Frequency Pre-Stack Seismic Inversion
Integrated Hydrocarbon Detection Based on Full Frequency Pre-Stack Seismic Inversion
Abstract
To improve the accuracy of hydrocarbon detection, seismic amplitude variation with offset (AVO), seismic amplitude variation with frequency (AVF), and direc...
General classification of seismic protection systems of buildings and structures
General classification of seismic protection systems of buildings and structures
The issues of ensuring the seismic resistance of buildings and structures hold a leading position despite significant achievements in this area. This is confirmed by the significan...
AI/ML Method for Seismic Well Tie Support on the OSDU Platform: Predicting Missing Wireline and Checkshot Data Using Well Borehole, Mudlog, and Seismic Data
AI/ML Method for Seismic Well Tie Support on the OSDU Platform: Predicting Missing Wireline and Checkshot Data Using Well Borehole, Mudlog, and Seismic Data
Abstract
In this study, we introduce an AI/ML method for predicting missing wireline and checkshot data to support seismic well tie workflows. Well tie seismic is a ...
Seismic Motion Inversion Based on Geological Conditioning and Its Application in Thin Reservoir Prediction, Middle East
Seismic Motion Inversion Based on Geological Conditioning and Its Application in Thin Reservoir Prediction, Middle East
Abstract
With the development of exploration and development, thin reservoir prediction is becoming more and more important. However, due to the limit of seismic res...
Unstable Shear Slip Failure and Seismic Potential Investigation Using DEM in Underground Mining
Unstable Shear Slip Failure and Seismic Potential Investigation Using DEM in Underground Mining
Abstract
Perturbations arising from mining operations significantly affect the stability of rock masses, and the influences aggerates with the rapid increase of mining-operation de...
cigFacies: a massive-scale benchmark dataset of seismic facies and its application
cigFacies: a massive-scale benchmark dataset of seismic facies and its application
Abstract. Seismic facies classification is crucial for seismic stratigraphic interpretation and hydrocarbon reservoir characterization but remains a tedious and time-consuming task ...

