Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Bioengineering Clinically Relevant Cardiomyocytes and Cardiac Tissues from Pluripotent Stem Cells

View through CrossRef
The regenerative capacity of cardiomyocytes is insufficient to functionally recover damaged tissue, and as such, ischaemic heart disease forms the largest proportion of cardiovascular associated deaths. Human-induced pluripotent stem cells (hiPSCs) have enormous potential for developing patient specific cardiomyocytes for modelling heart disease, patient-based cardiac toxicity testing and potentially replacement therapy. However, traditional protocols for hiPSC-derived cardiomyocytes yield mixed populations of atrial, ventricular and nodal-like cells with immature cardiac properties. New insights gleaned from embryonic heart development have progressed the precise production of subtype-specific hiPSC-derived cardiomyocytes; however, their physiological immaturity severely limits their utility as model systems and their use for drug screening and cell therapy. The long-entrenched challenges in this field are being addressed by innovative bioengingeering technologies that incorporate biophysical, biochemical and more recently biomimetic electrical cues, with the latter having the potential to be used to both direct hiPSC differentiation and augment maturation and the function of derived cardiomyocytes and cardiac tissues by mimicking endogenous electric fields.
Title: Bioengineering Clinically Relevant Cardiomyocytes and Cardiac Tissues from Pluripotent Stem Cells
Description:
The regenerative capacity of cardiomyocytes is insufficient to functionally recover damaged tissue, and as such, ischaemic heart disease forms the largest proportion of cardiovascular associated deaths.
Human-induced pluripotent stem cells (hiPSCs) have enormous potential for developing patient specific cardiomyocytes for modelling heart disease, patient-based cardiac toxicity testing and potentially replacement therapy.
However, traditional protocols for hiPSC-derived cardiomyocytes yield mixed populations of atrial, ventricular and nodal-like cells with immature cardiac properties.
New insights gleaned from embryonic heart development have progressed the precise production of subtype-specific hiPSC-derived cardiomyocytes; however, their physiological immaturity severely limits their utility as model systems and their use for drug screening and cell therapy.
The long-entrenched challenges in this field are being addressed by innovative bioengingeering technologies that incorporate biophysical, biochemical and more recently biomimetic electrical cues, with the latter having the potential to be used to both direct hiPSC differentiation and augment maturation and the function of derived cardiomyocytes and cardiac tissues by mimicking endogenous electric fields.

Related Results

Stem cells
Stem cells
What is a stem cell? The term is a combination of ‘cell’ and ‘stem’. A cell is a major category of living thing, while a stem is a site of growth and support for something else. In...
Murine pluripotent stem cells that escape differentiation inside teratomas maintain pluripotency
Murine pluripotent stem cells that escape differentiation inside teratomas maintain pluripotency
Background. Pluripotent stem cells (PSCs) offer immense potential as a source for regenerative therapies. The teratoma assay is widely used in the field of stem cells and regenerat...
MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing v1
MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing v1
Human tissues comprise trillions of cells that populate a complex space of molecular phenotypes and functions and that vary in abundance by 4–9 orders of magnitude. Relying solely ...
Stem Cells: Hype and Reality
Stem Cells: Hype and Reality
AbstractThis update discusses what is known regarding embryonic and adult tissue-derived pluripotent stem cells, including the mechanisms underlying self-renewal without senescence...
Optimal structure of heterogeneous stem cell niche: The importance of cell migration in delaying tumorigenesis
Optimal structure of heterogeneous stem cell niche: The importance of cell migration in delaying tumorigenesis
AbstractStudying the stem cell niche architecture is a crucial step for investigating the process of oncogenesis and obtaining an effective stem cell therapy for various cancers. R...
O-065 The naughty cells of the endometriumxx
O-065 The naughty cells of the endometriumxx
Abstract Stem/progenitor cells are the naughty cells of the endometrium! The term “naughty” has a number of connotations, one being immaturity which I will apply to ...

Back to Top