Javascript must be enabled to continue!
Intelligent optimization design of large-scale three-dimensional ultrasonic vibration system
View through CrossRef
Large-scale three-dimensional ultrasonic vibration systems are susceptible to the influence of coupled vibration, resulting in a series of problems such as increased energy loss, small longitudinal displacement amplitude of the radiation surface, and uneven distribution of longitudinal displacement amplitude, which can seriously affect the working efficiency of ultrasonic processing system. How to effectively control the coupled vibration of large-scale three-dimensional ultrasonic transducer systems and optimize their performance has become an urgent problem in the field of power ultrasound. The research has found that some phononic crystal slots and point defect structures can suppress the lateral vibration of large-scale transducer systems, improve the uniformity of system amplitude distribution, and artificially regulate the performance of large-scale three-dimensional ultrasonic vibration systems by changing the configuration parameters of phononic crystal structures. However, excessive design parameters will inevitably increase the complexity of system design, and, currently, the optimization design of large-scale three-dimensional ultrasonic transducer systems relies on empirical trial and error methods which has low design efficiency and low success rate, and cannot guarantee the system performance. Therefore, in the study, homogeneous dislocations and point defect structures are introduced to optimize the design of large-scale three-dimensional ultrasonic vibration systems. Data analysis techniques are used to evaluate the influences of the configuration of homogeneous dislocations and point defect structures on the longitudinal displacement amplitude, amplitude distribution uniformity, radiated sound power, working bandwidth of the system’s radiation surface. And a predictive model for the performance of large-scale ultrasonic transducer system with homogeneous dislocation structure and near periodic defect structure is established, which can achieve intelligent design of large-scale power ultrasonic transducer system, improve design efficiency and success rate, and reduce the design cost.
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Title: Intelligent optimization design of large-scale three-dimensional ultrasonic vibration system
Description:
Large-scale three-dimensional ultrasonic vibration systems are susceptible to the influence of coupled vibration, resulting in a series of problems such as increased energy loss, small longitudinal displacement amplitude of the radiation surface, and uneven distribution of longitudinal displacement amplitude, which can seriously affect the working efficiency of ultrasonic processing system.
How to effectively control the coupled vibration of large-scale three-dimensional ultrasonic transducer systems and optimize their performance has become an urgent problem in the field of power ultrasound.
The research has found that some phononic crystal slots and point defect structures can suppress the lateral vibration of large-scale transducer systems, improve the uniformity of system amplitude distribution, and artificially regulate the performance of large-scale three-dimensional ultrasonic vibration systems by changing the configuration parameters of phononic crystal structures.
However, excessive design parameters will inevitably increase the complexity of system design, and, currently, the optimization design of large-scale three-dimensional ultrasonic transducer systems relies on empirical trial and error methods which has low design efficiency and low success rate, and cannot guarantee the system performance.
Therefore, in the study, homogeneous dislocations and point defect structures are introduced to optimize the design of large-scale three-dimensional ultrasonic vibration systems.
Data analysis techniques are used to evaluate the influences of the configuration of homogeneous dislocations and point defect structures on the longitudinal displacement amplitude, amplitude distribution uniformity, radiated sound power, working bandwidth of the system’s radiation surface.
And a predictive model for the performance of large-scale ultrasonic transducer system with homogeneous dislocation structure and near periodic defect structure is established, which can achieve intelligent design of large-scale power ultrasonic transducer system, improve design efficiency and success rate, and reduce the design cost.
Related Results
Research on the Formation Mechanism of Surface Morphology in Three-Excitation Ultrasonic Spatial Vibration-Assisted Turning
Research on the Formation Mechanism of Surface Morphology in Three-Excitation Ultrasonic Spatial Vibration-Assisted Turning
Abstract
To improve the machining performance of different processing materials, a three-excitation ultrasonic spatial vibration-assisted turning system is proposed, which ...
Research on acoustic control of coupled vibration system of transducers using acoustic surface and topological defect structures
Research on acoustic control of coupled vibration system of transducers using acoustic surface and topological defect structures
<sec>How to regulate the sound waves in the coupled vibration system of complex power ultrasonic transducers and design high-performance transducer systems has always been an...
Vibration suppression mechanism of ultrasonic field energy
Vibration suppression mechanism of ultrasonic field energy
Abstract
For complex systems, the inhibition of self-excited vibration has always been a difficulty in engineering field. Currently, ultrasonic field energy as a special fi...
Review on single-phase driven ultrasonic motors
Review on single-phase driven ultrasonic motors
In recent decades, various single-phase drive ultrasonic motors have emerged, and only a single excitation signal is used in their working states. Single-phase driven ultrasonic mo...
Investigation on Intelligent Rotor Vibration Control Based on Electromagnetic Damping Seal
Investigation on Intelligent Rotor Vibration Control Based on Electromagnetic Damping Seal
Higher energy level and more compact structure are the trend of centrifugal compressor, which may lead to the rotordynamics instability problems and high vibration. These problems ...
Effects of ultrasonic vibration on the microstructure and mechanical properties of high alloying TiAl
Effects of ultrasonic vibration on the microstructure and mechanical properties of high alloying TiAl
AbstractTo modify the microstructure and enhance performances, the ultrasonic vibration is applied in the mould casting of TiAl alloy. The effects and mechanism of ultrasonic vibra...
Effects of Ultrasonic Waves During Waterflooding for Enhanced Oil Recovery
Effects of Ultrasonic Waves During Waterflooding for Enhanced Oil Recovery
Ultrasonic waves is an unconventional enhanced oil recovery (EOR) technology and has been a point of interest as it is more economical and environmentally friendly. Numerous resear...

