Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Spectral, Electrochemical, and Solar Cell Studies of Peripheral Modified Carboxy Zinc Porphyrins

View through CrossRef
Six peripherally meso-modified Zn (II) porphyrin sensitizer dyes are designed and their J-V performance in dye sensitized solar cell (DSSC) evaluated. Electron-donating groups including phenothiazine, carbazole and pyrene are used to modify the porphyrin macrocycle at the meso-carbon position(s). To compare the effect of donor substitution on the performance of the cells in terms of short circuit current (Jsc), light harvesting efficiency (LHE) and power conversion efficiency (η), two sets of sensitizers with different degrees of substitution are synthesized. One set of dyes (mono-substituted) have one electron donor at trans-position to the acceptor, while the second set (tri-substituted) dyes have three of the same type electron donor groups at 5, 10 and 15 meso-carbon positions making all the six dyes push-pull type sensitizers incorporating 4'-carboxyphenyl as an electron-acceptor/anchor group. Different spectroscopic and electrochemical methods are used to study the photophysical and electrochemical properties of the dyes, while the photovoltaic performance of their cells under 1.5 A.M is studied using solar simulator. Meso-substitution of Zinc (II) porphyrin with these small donor molecules is shown to improve the light harvesting character of the Zinc (II) porphyrin macrocycle in the UV-Vis absorption while at same time improving its fluorescence quantum yield, excited-state life time and electron donating potential. All these factors combined make these meso-modified dyes better sensitizers with suitable Δ0 Δ0, and much improved power conversion efficiencies (PCE) compared to unsubstituted Zn (II) porphyrin. In particular, as a result of the peripheral modification, a doubling in efficiency in the mono- substituted series (RA-200-Zn; η=^M 4.2%, Jsc= -13.13 mA cm-2, Voc=0.54 ) and tripling in the tri-substituted series ( tri-phenothiazine Zn (II) Porphyrin; η= 7.3%, Jsc= -18.15 mA cm-2, Voc= 0.55 ) compared to unsubstituted Zn (II) porphyrin (η= 2.11%, Jsc= -5.7 mA cm-2, Voc= 0.53 V) has been accomplished.
University of North Texas Libraries
Title: Spectral, Electrochemical, and Solar Cell Studies of Peripheral Modified Carboxy Zinc Porphyrins
Description:
Six peripherally meso-modified Zn (II) porphyrin sensitizer dyes are designed and their J-V performance in dye sensitized solar cell (DSSC) evaluated.
Electron-donating groups including phenothiazine, carbazole and pyrene are used to modify the porphyrin macrocycle at the meso-carbon position(s).
To compare the effect of donor substitution on the performance of the cells in terms of short circuit current (Jsc), light harvesting efficiency (LHE) and power conversion efficiency (η), two sets of sensitizers with different degrees of substitution are synthesized.
One set of dyes (mono-substituted) have one electron donor at trans-position to the acceptor, while the second set (tri-substituted) dyes have three of the same type electron donor groups at 5, 10 and 15 meso-carbon positions making all the six dyes push-pull type sensitizers incorporating 4'-carboxyphenyl as an electron-acceptor/anchor group.
Different spectroscopic and electrochemical methods are used to study the photophysical and electrochemical properties of the dyes, while the photovoltaic performance of their cells under 1.
5 A.
M is studied using solar simulator.
Meso-substitution of Zinc (II) porphyrin with these small donor molecules is shown to improve the light harvesting character of the Zinc (II) porphyrin macrocycle in the UV-Vis absorption while at same time improving its fluorescence quantum yield, excited-state life time and electron donating potential.
All these factors combined make these meso-modified dyes better sensitizers with suitable Δ0 Δ0, and much improved power conversion efficiencies (PCE) compared to unsubstituted Zn (II) porphyrin.
In particular, as a result of the peripheral modification, a doubling in efficiency in the mono- substituted series (RA-200-Zn; η=^M 4.
2%, Jsc= -13.
13 mA cm-2, Voc=0.
54 ) and tripling in the tri-substituted series ( tri-phenothiazine Zn (II) Porphyrin; η= 7.
3%, Jsc= -18.
15 mA cm-2, Voc= 0.
55 ) compared to unsubstituted Zn (II) porphyrin (η= 2.
11%, Jsc= -5.
7 mA cm-2, Voc= 0.
53 V) has been accomplished.

Related Results

Solar Trackers Using Six-Bar Linkages
Solar Trackers Using Six-Bar Linkages
Abstract A solar panel faces the sun or has the solar ray normal to its face to enhance power reaping. A fixed solar panel can only meet this condition at one moment...
3rd international Biometals webinars
3rd international Biometals webinars
Introduction to the 3rd Biometals webinars and tribute to Pierre CornelisWelcome to the 3rd international webinars series. For those who don't already know, these webinars have bee...
MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing v1
MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing v1
Human tissues comprise trillions of cells that populate a complex space of molecular phenotypes and functions and that vary in abundance by 4–9 orders of magnitude. Relying solely ...
Maternal Zinc Intakes and Homeostatic Adjustments during Pregnancy and Lactation
Maternal Zinc Intakes and Homeostatic Adjustments during Pregnancy and Lactation
Zinc plays critical roles during embryogenesis, fetal growth, and milk secretion, which increase the zinc need for pregnancy and lactation. Increased needs can be met by increasing...
Abstract 1589: Zinc inhibits androgen receptor expression to inhibit prostate cancer cell growth
Abstract 1589: Zinc inhibits androgen receptor expression to inhibit prostate cancer cell growth
Abstract Background: Prostate gland contains high level of intracellular zinc which is dramatically diminished during cancer development. Due to the obscure role of ...
SERUM ZINC CONCENTRATION OF CORD BLOOD IN TERM NEONATES AT OF HUE UNIVERSITY OF MEDICINE AND PHARMACY HOSPITAL
SERUM ZINC CONCENTRATION OF CORD BLOOD IN TERM NEONATES AT OF HUE UNIVERSITY OF MEDICINE AND PHARMACY HOSPITAL
Background: Zinc is one of the important trace elements involved in many biological functions of the body. Newborns are susceptible to zinc deficiency. Zinc deficiency in the mothe...
Zinc Transport: Regulation
Zinc Transport: Regulation
AbstractZinc homeostasis in cells is tightly controlled within narrow boundaries through the highly integrated processes of zinc uptake, sequestration, and efflux across the cell m...

Back to Top