Javascript must be enabled to continue!
Vortex pattern in three-dimensional mesoscopic superconducting rings
View through CrossRef
Vortex structures in a mesoscopic a superconducting ring, which is in the magnetic field generated by a circular electric current, are investigated based on the phenomenological Ginzburg-Landau (G-L) theory. Due to the axial symmetry of the system, the three-dimensional problem is reduced to a two-dimensional problem. We can mesh a two-dimensional sample into grids, and discretize the first G-L equation by using the finite-difference method. Then the eigenvalues and eigenfunctions will be evaluated numerically by solving the discrete equations. With the eigenvalues and eigenfunctions we further obtain the minimum free energy of the system and the corresponding superconducting wave function. We discuss the influences of the ring size and magnetic field distribution on two kinds of the vortex structures: giant vortex state (GVS) and multivortex state (MVS). Calculations show: 1) the GVS with axial symmetric wave function exists only in a small size superconducting ring, as the GVS is a state of single vortex line that only goes through the hole at the center of the superconducting ring and carries several magnetic flux quanta with it; 2) with the increase of the ring size, the diamagnetism of superconducting ring becomes stronger, and the critical magnetic field value of a giant vortex state increases, and the maximal number of giant vortexes that the superconducting ring can accommodate is also growing; furthermore, the entrance of a flux line will cause fluctuations of critical field values; 3) when the superconducting ring size is large enough, a GVS splits into a number of MVS. The MVS is an excited state and the GVS is mostly a ground state; 4) the free energy of the system changes with the magnetic field distribution, the magnetic field provided by a central small current loop can pass through the superconducting ring easily, and produce multivortices whose formations are diverse; if the magnetic field runs parallel to the plane of the superconducting ring, it is difficult to pass through the superconducting ring and form multivortices; 5) the vortex lines are naturally bent with the magnetic field lines and can pass through the same horizontal plane twice, so that one of the two vortex states seems to be an antivortex state; generally, the magnetic field lines can go through the hole of a superconducting ring easily but can hardly penetrate through the body of a superconducting ring, the structure of multivortices is similar to that of the magnetic field distribution in a superconducting ring. We also obtain a vortex structure with coexistences of giant vortex and multivortices. This study is of significance for the application of superconducting nanomaterials.
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Title: Vortex pattern in three-dimensional mesoscopic superconducting rings
Description:
Vortex structures in a mesoscopic a superconducting ring, which is in the magnetic field generated by a circular electric current, are investigated based on the phenomenological Ginzburg-Landau (G-L) theory.
Due to the axial symmetry of the system, the three-dimensional problem is reduced to a two-dimensional problem.
We can mesh a two-dimensional sample into grids, and discretize the first G-L equation by using the finite-difference method.
Then the eigenvalues and eigenfunctions will be evaluated numerically by solving the discrete equations.
With the eigenvalues and eigenfunctions we further obtain the minimum free energy of the system and the corresponding superconducting wave function.
We discuss the influences of the ring size and magnetic field distribution on two kinds of the vortex structures: giant vortex state (GVS) and multivortex state (MVS).
Calculations show: 1) the GVS with axial symmetric wave function exists only in a small size superconducting ring, as the GVS is a state of single vortex line that only goes through the hole at the center of the superconducting ring and carries several magnetic flux quanta with it; 2) with the increase of the ring size, the diamagnetism of superconducting ring becomes stronger, and the critical magnetic field value of a giant vortex state increases, and the maximal number of giant vortexes that the superconducting ring can accommodate is also growing; furthermore, the entrance of a flux line will cause fluctuations of critical field values; 3) when the superconducting ring size is large enough, a GVS splits into a number of MVS.
The MVS is an excited state and the GVS is mostly a ground state; 4) the free energy of the system changes with the magnetic field distribution, the magnetic field provided by a central small current loop can pass through the superconducting ring easily, and produce multivortices whose formations are diverse; if the magnetic field runs parallel to the plane of the superconducting ring, it is difficult to pass through the superconducting ring and form multivortices; 5) the vortex lines are naturally bent with the magnetic field lines and can pass through the same horizontal plane twice, so that one of the two vortex states seems to be an antivortex state; generally, the magnetic field lines can go through the hole of a superconducting ring easily but can hardly penetrate through the body of a superconducting ring, the structure of multivortices is similar to that of the magnetic field distribution in a superconducting ring.
We also obtain a vortex structure with coexistences of giant vortex and multivortices.
This study is of significance for the application of superconducting nanomaterials.
Related Results
Investigation of vortex in pump sump by V3V measurements
Investigation of vortex in pump sump by V3V measurements
Abstract
The aims, scope and conclusions of the paper must be in a self-contained abstract of a single paragraph with 60-120 words. The abstract must be informative ...
Numerical simulation for axis switching of pulsating jet issued from rectangular nozzle at low Reynolds number
Numerical simulation for axis switching of pulsating jet issued from rectangular nozzle at low Reynolds number
Axis switching of a jet ejected from a rectangular nozzle affects flow mixing characteristics. To elucidate such a mixing mechanism, the axis switching and vortex structure deforma...
The linear stability of swirling vortex rings
The linear stability of swirling vortex rings
The stability of vortex rings with an azimuthal component of velocity is investigated numerically for various combinations of ring wavenumber and swirl magnitude. The vortex rings ...
Superconducting Proximity Effect in Magnetic Molecules
Superconducting Proximity Effect in Magnetic Molecules
<p>We studied the transport through magnetic molecules (MM) coupled to superconducting (S), ferromagnetic (F) and normal (N) leads, with the aim of investigating the interpla...
Interaction of vortex rings with multiple permeable screens
Interaction of vortex rings with multiple permeable screens
Interaction of a vortex ring impinging on multiple permeable screens orthogonal to the ring axis was studied to experimentally investigate the persistence and decay of vortical str...
The evolution of swirling axisymmetric vortex rings
The evolution of swirling axisymmetric vortex rings
Swirling vortex rings form in any turbulent flow where a swirling component is present, such as in combustion chambers or the downwash of helicopter blades. Instabilities on initia...
Research on the formation and precipitation of the southwest vortex impacted by the Plateau Vortex
Research on the formation and precipitation of the southwest vortex impacted by the Plateau Vortex
Abstract
This study investigated the source, trajectory, and the precipitation patterns of the SouthWest (SW) vortex, which was linked with the Plateau (P) vortex. Based on...
Experimental investigation on the starting vortex induced by symmetrical dielectric barrier discharge plasma actuator
Experimental investigation on the starting vortex induced by symmetrical dielectric barrier discharge plasma actuator
Flow control using plasma actuator is a promising research field of aeronautical applications. Due to its low energy consumption, rapid response and simple construction, this actua...


