Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Bayesian Spatio-temporal Additive Modeling of Severe Food Insecurity Dynamics Across Africa

View through CrossRef
Abstract Spatio-temporal analysis is a powerful tool for exploring geo-referenced data containing space and time information. The models are often visualized through maps to represent the spatial dependence and temporal correlation over time. Therefore, this study aims to investigate the country-level determinants and spatio-temporal dynamics of severe food insecurity across 52 African countries over the period 2015–2021. The study employed Bayesian spatio-temporal additive models, including the classical parametric trend model, spatiotemporal ANOVA model, dynamic nonparametric trend model, and space-time interaction nonparametric trend model. The estimations were carried out using R-INLA. Among the fitted models, the Bayesian spatio-temporal additive model with a Type I interaction demonstrated the best overall fit for the dataset. The findings show evidence that severe food insecurity was significantly spatially dependent (τ_θ^2 = 2705.77) and temporally correlated (τ_α^2 = 10.75) across the continent. The spatio-temporal interaction term (τ_δ^2= 29,438.77) also exhibits high precision, suggesting that the interaction between space and time contributes relatively little additional variability as compared to spatial and temporal components. Model-based estimates were mapped to examine the continent's geographic disparities and temporal variability. The temporal analysis at the continental scale showed a significant and sustained upward trend in severe food insecurity over the study period, with most countries experiencing rising rates. The spatial analysis also revealed that the rate of vulnerabilities varied by geographic location, with countries such as the Democratic Republic of Congo, Central African Republic, South Sudan, Kenya, Ethiopia, Libya, Algeria, Nigeria, Niger, Mali, Burkina Faso, Angola, and Zimbabwe consistently and persistently experiencing a high rate of severe food insecurity throughout much of the study periods. Furthermore, the study identified that malaria incidence, climate change, livestock production and investment inflow had statistically significant linear fixed effects on the severe food insecurity rate. In contrast, cereal import dependence, Greenhouse Gas (GHG) emissions, dietary energy supply, dietary protein supply, gross domestic product (GDP), unemployment, inflation, and caloric loss exhibited statistically significant intricate, dynamic and spatially varying nonlinear influences on the severe food insecurity. Our findings underscore the need for multi-sectoral, adaptive policies integrating health, agriculture, climate, and economic planning. Governments should prioritize malaria prevention, climate adaptation, livestock development, investment promotion and macroeconomic stability while tailoring responses to country-specific contexts. Keywords: Spatio-temporal Additive Models, Spatial Effects, Temporal Effects, Space-time Interaction, INLA, Severe Food Insecurity, Africa
Title: Bayesian Spatio-temporal Additive Modeling of Severe Food Insecurity Dynamics Across Africa
Description:
Abstract Spatio-temporal analysis is a powerful tool for exploring geo-referenced data containing space and time information.
The models are often visualized through maps to represent the spatial dependence and temporal correlation over time.
Therefore, this study aims to investigate the country-level determinants and spatio-temporal dynamics of severe food insecurity across 52 African countries over the period 2015–2021.
The study employed Bayesian spatio-temporal additive models, including the classical parametric trend model, spatiotemporal ANOVA model, dynamic nonparametric trend model, and space-time interaction nonparametric trend model.
The estimations were carried out using R-INLA.
Among the fitted models, the Bayesian spatio-temporal additive model with a Type I interaction demonstrated the best overall fit for the dataset.
The findings show evidence that severe food insecurity was significantly spatially dependent (τ_θ^2 = 2705.
77) and temporally correlated (τ_α^2 = 10.
75) across the continent.
The spatio-temporal interaction term (τ_δ^2= 29,438.
77) also exhibits high precision, suggesting that the interaction between space and time contributes relatively little additional variability as compared to spatial and temporal components.
Model-based estimates were mapped to examine the continent's geographic disparities and temporal variability.
The temporal analysis at the continental scale showed a significant and sustained upward trend in severe food insecurity over the study period, with most countries experiencing rising rates.
The spatial analysis also revealed that the rate of vulnerabilities varied by geographic location, with countries such as the Democratic Republic of Congo, Central African Republic, South Sudan, Kenya, Ethiopia, Libya, Algeria, Nigeria, Niger, Mali, Burkina Faso, Angola, and Zimbabwe consistently and persistently experiencing a high rate of severe food insecurity throughout much of the study periods.
Furthermore, the study identified that malaria incidence, climate change, livestock production and investment inflow had statistically significant linear fixed effects on the severe food insecurity rate.
In contrast, cereal import dependence, Greenhouse Gas (GHG) emissions, dietary energy supply, dietary protein supply, gross domestic product (GDP), unemployment, inflation, and caloric loss exhibited statistically significant intricate, dynamic and spatially varying nonlinear influences on the severe food insecurity.
Our findings underscore the need for multi-sectoral, adaptive policies integrating health, agriculture, climate, and economic planning.
Governments should prioritize malaria prevention, climate adaptation, livestock development, investment promotion and macroeconomic stability while tailoring responses to country-specific contexts.
Keywords: Spatio-temporal Additive Models, Spatial Effects, Temporal Effects, Space-time Interaction, INLA, Severe Food Insecurity, Africa.

Related Results

Household food insecurity in the UK: data and research landscape
Household food insecurity in the UK: data and research landscape
Household food insecurity is a widely used concept in high-income countries to describe “uncertainty about future food availability and access, insufficiency in the amount and kind...
Developing and Implementing a "Hunger-Free Hospital" Model
Developing and Implementing a "Hunger-Free Hospital" Model
In 2010, approximately 14.5 % of households in the US were food insecure sometime during the year (Nord, Coleman-Jensen, Andrews, & Carlson, 2010). Children living in household...
Development and Validation of a Direct Food Insecurity Measurement Instrument: A Study Protocol (Preprint)
Development and Validation of a Direct Food Insecurity Measurement Instrument: A Study Protocol (Preprint)
BACKGROUND The Sustainable Development Goals (SDGs) aim to achieve sustainable food security with a focus on eradicating hunger and poverty. Although some p...
Food Insecurity and Its Predictors among Lactating Mothers in North Shoa Zone, Central Ethiopia
Food Insecurity and Its Predictors among Lactating Mothers in North Shoa Zone, Central Ethiopia
Abstract Background: Ending food insecurity is one of the goals of Sustainable Development Goals (SDGs). It is also one of the serious problems of Ethiopia. However, there ...
Afrikanske smede
Afrikanske smede
African Smiths Cultural-historical and sociological problems illuminated by studies among the Tuareg and by comparative analysisIn KUML 1957 in connection with a description of sla...
Sample-efficient Optimization Using Neural Networks
Sample-efficient Optimization Using Neural Networks
<p>The solution to many science and engineering problems includes identifying the minimum or maximum of an unknown continuous function whose evaluation inflicts non-negligibl...
Persistent Food Insecurity from Policy Failures in Pakistan
Persistent Food Insecurity from Policy Failures in Pakistan
Food security means, “All the people, all the time, have physical and economic access to sufficient, safe and nutritious food to meet their dietary needs and food preference for an...

Back to Top