Javascript must be enabled to continue!
Structural optimization of conveyor belt-architected triboelectric nanogenerator for enhanced energy harvesting performance
View through CrossRef
Purpose
The development of a conveyor belt triboelectric nanogenerator (CB-TENG) based on sliding electrification aims to achieve synergistic integration of self-powered, self-sensing and self-diagnosing functionalities in mechanical systems; establish theoretical models and experimental benchmarks for interfacial optimization and operational adaptability in TENGs; and demonstrate the universality of finite element analysis (FEA) for TENG structural design and performance prediction.
Design/methodology/approach
FEA modeling: COMSOL multiphysics simulations were used to investigate the effects of dielectric material properties, electrode–dielectric interfacial gap distances and electrode configuration density on output performance. Experimental validation: prototype fabrication and testing under controlled rotational speeds and loading conditions were conducted to validate the reliability of simulation results. Interface optimization strategy: lubricant coating on electrode surfaces was introduced to evaluate lifespan enhancement while monitoring current output stability.
Findings
Output characteristics: linear proportionality between output current and rotational speed (I), with positive voltage-load correlation; charge accumulation saturation observed at 1,000 rpm; no signal degradation detected after 36 h of continuous operation. Lifespan enhancement: Lubricant coating significantly prolonged electrode durability without compromising current output.
Research limitations/implications
Narrow material and operational scope: limited to specific dielectric materials and sliding contact modes, excluding extreme temperature/humidity conditions; Unresolved dynamic mechanisms: microscopic charge migration dynamics remain unexplored.
Practical implications
Self-powered industrial solutions: enables maintenance-free, energy-autonomous sensing for conveyor systems, reducing reliance on external power; Interface design guidelines: simulation-driven dielectric material selection and electrode layout optimization accelerate TENG development; Durability strategy: lubricant coating offers a novel approach for wear-resistant applications (e.g. mining, logistics conveyors).
Social implications
Industry 4.0 Advancement: Promotes energy self-sufficiency and integrated condition monitoring in smart manufacturing; Carbon footprint reduction: Minimizes battery replacement and cabling needs, lowering industrial emissions; Sustainable technology development: Provides foundational insights for TENG applications in ocean energy harvesting and wearable devices.
Originality/value
First proposal of CB-TENG: innovative integration of TENG with conveyor belt mechanics, expanding industrial self-powered applications; Methodological breakthrough: a coupled FEA-experimental framework addresses the modeling gap in sliding-mode TENGs; Lubricant interface engineering: challenges conventional assumptions by demonstrating lubricant-induced durability enhancement without output trade-offs.
Peer review
The peer review history for this article is available at: Link to the website.
Title: Structural optimization of conveyor belt-architected triboelectric nanogenerator for enhanced energy harvesting performance
Description:
Purpose
The development of a conveyor belt triboelectric nanogenerator (CB-TENG) based on sliding electrification aims to achieve synergistic integration of self-powered, self-sensing and self-diagnosing functionalities in mechanical systems; establish theoretical models and experimental benchmarks for interfacial optimization and operational adaptability in TENGs; and demonstrate the universality of finite element analysis (FEA) for TENG structural design and performance prediction.
Design/methodology/approach
FEA modeling: COMSOL multiphysics simulations were used to investigate the effects of dielectric material properties, electrode–dielectric interfacial gap distances and electrode configuration density on output performance.
Experimental validation: prototype fabrication and testing under controlled rotational speeds and loading conditions were conducted to validate the reliability of simulation results.
Interface optimization strategy: lubricant coating on electrode surfaces was introduced to evaluate lifespan enhancement while monitoring current output stability.
Findings
Output characteristics: linear proportionality between output current and rotational speed (I), with positive voltage-load correlation; charge accumulation saturation observed at 1,000 rpm; no signal degradation detected after 36 h of continuous operation.
Lifespan enhancement: Lubricant coating significantly prolonged electrode durability without compromising current output.
Research limitations/implications
Narrow material and operational scope: limited to specific dielectric materials and sliding contact modes, excluding extreme temperature/humidity conditions; Unresolved dynamic mechanisms: microscopic charge migration dynamics remain unexplored.
Practical implications
Self-powered industrial solutions: enables maintenance-free, energy-autonomous sensing for conveyor systems, reducing reliance on external power; Interface design guidelines: simulation-driven dielectric material selection and electrode layout optimization accelerate TENG development; Durability strategy: lubricant coating offers a novel approach for wear-resistant applications (e.
g.
mining, logistics conveyors).
Social implications
Industry 4.
0 Advancement: Promotes energy self-sufficiency and integrated condition monitoring in smart manufacturing; Carbon footprint reduction: Minimizes battery replacement and cabling needs, lowering industrial emissions; Sustainable technology development: Provides foundational insights for TENG applications in ocean energy harvesting and wearable devices.
Originality/value
First proposal of CB-TENG: innovative integration of TENG with conveyor belt mechanics, expanding industrial self-powered applications; Methodological breakthrough: a coupled FEA-experimental framework addresses the modeling gap in sliding-mode TENGs; Lubricant interface engineering: challenges conventional assumptions by demonstrating lubricant-induced durability enhancement without output trade-offs.
Peer review
The peer review history for this article is available at: Link to the website.
Related Results
Belt conveyor starting mode optimization
Belt conveyor starting mode optimization
The work is aimed at increasing the efficiency of belt conveyors by choosing the drive mechanism movement mode.
During the operation of belt conveyors, significant energy and dyna...
Effects of Thermal Annealing on The Morphology and Structural Characteristics of Zinc Oxide Nanopowders for Triboelectric Nanogenerator Applications
Effects of Thermal Annealing on The Morphology and Structural Characteristics of Zinc Oxide Nanopowders for Triboelectric Nanogenerator Applications
The influence of thermal annealing on the surface morphologies and structural characteristics of zinc oxide (ZnO) nanopowders synthesized via the solution immersion method for trib...
(Invited) Piezoelectric Peptide-Based Energy Harvesters
(Invited) Piezoelectric Peptide-Based Energy Harvesters
Nanoscale energy harvester holds promise for the development of self-powered nanosystems, while molecular self-assembly of bio-inspired materials has attracted much research effort...
Nanosheet Zinc Oxide Synthesized by Solution-Immersion Method for Triboelectric Nanogenerator
Nanosheet Zinc Oxide Synthesized by Solution-Immersion Method for Triboelectric Nanogenerator
Most global problems are being solved by using sustainable energy harvesting technologies to retain the social ecosystem in great condition. The triboelectric nanogenerator (TENG) ...
A flexible belt conveying system: self-organizing ofmicro-conveyor cells
A flexible belt conveying system: self-organizing ofmicro-conveyor cells
Abstract
Conveyor systems play an important role in material transportation in industries. For the problems of lacking belt conveying system for flexible organization and A...
Reliability Analysis of Belt Conveyor Based on Fault Data
Reliability Analysis of Belt Conveyor Based on Fault Data
Abstract
In order to improve the accuracy of the reliable analysis of the belt conveyor, based on the belt conveyor fault data, firstly fit the probability density d...
A Mousepad Triboelectric-Piezoelectric Hybrid Nanogenerator (TPHNG) for Self-Powered Computer User Behavior Monitoring Sensors and Biomechanical Energy Harvesting
A Mousepad Triboelectric-Piezoelectric Hybrid Nanogenerator (TPHNG) for Self-Powered Computer User Behavior Monitoring Sensors and Biomechanical Energy Harvesting
Hybrid nanogenerators based on the principle of surface charging of functional films are significant in self-powering sensing and energy conversion devices due to their multiple fu...
D2Net: a dual-branch lightweight network for conveyor belt rotation detection in pipe belt conveyors
D2Net: a dual-branch lightweight network for conveyor belt rotation detection in pipe belt conveyors
Abstract
Due to the swift advancement of artificial intelligence technology, semantic segmentation has emerged as a critical method for identifying rotational flaws in conv...

