Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Investigation of Pore Structure and Fractal Characteristics in an Organic-Rich Shale Gas-Condensate Reservoir from the Duvernay Formation

View through CrossRef
Abstract Interest has spread to potential unconventional shale reservoirs in the last decades, and they have become an increasingly important source of hydrocarbon. Importantly, pore structure of shale has considerable effects on the storage, seepage and output of the fluids in shale reservoirs so that reliable fractal characteristics are essential. To better understand the evolution characteristics of pore structure for a shale gas condensate reservoir and their influence on liquid hydrocarbon occurrences and reservoir physical properties, we conducted high-pressure mercury intrusion tests (HPMIs), field emission scanning electron microscopies (FESEM), total organic carbon (TOC), Rock-Eval pyrolysis and saturation measurements on samples from the Duvernay formation. Furthermore, the fractal theory is applied to calculate the fractal dimension of the capillary pressure curves, and three fractal dimensions D1, D2 and D3 are obtained. The relationships among the characteristics of the Duvernay shale (TOC, organic matter maturity, fluid saturation), the pore structure parameters (permeability, porosity, median pore size), and the fractal dimensions were investigated. The results show that the fractal dimension D1 ranges from 2.44 to 2.85, D2 ranges from 2.09 to 2.15 and D3 ranges from 2.35 to 2.48. D2 and D3 have a good positive correlation. The pore system studied mainly consists of organic pores and microfractures, with the percentage of micropores being 50.38%. TOC has a positive relationship with porosity and D3 due to the development of organic pores. D3 has a positive correlation with gas saturation. With increased D3, median pore size shows a decreasing trend and an increase in permeability and porosity, demonstrating that D3 has a large effect on pore size distribution and the heterogeneity of pore size. In general, D3 has a better correlation with petrophysical and petrochemical parameters. Fractal theory can be applied to better understand the pore evolution, pore size distribution and fluid storage capacity of shale reservoirs.
Title: Investigation of Pore Structure and Fractal Characteristics in an Organic-Rich Shale Gas-Condensate Reservoir from the Duvernay Formation
Description:
Abstract Interest has spread to potential unconventional shale reservoirs in the last decades, and they have become an increasingly important source of hydrocarbon.
Importantly, pore structure of shale has considerable effects on the storage, seepage and output of the fluids in shale reservoirs so that reliable fractal characteristics are essential.
To better understand the evolution characteristics of pore structure for a shale gas condensate reservoir and their influence on liquid hydrocarbon occurrences and reservoir physical properties, we conducted high-pressure mercury intrusion tests (HPMIs), field emission scanning electron microscopies (FESEM), total organic carbon (TOC), Rock-Eval pyrolysis and saturation measurements on samples from the Duvernay formation.
Furthermore, the fractal theory is applied to calculate the fractal dimension of the capillary pressure curves, and three fractal dimensions D1, D2 and D3 are obtained.
The relationships among the characteristics of the Duvernay shale (TOC, organic matter maturity, fluid saturation), the pore structure parameters (permeability, porosity, median pore size), and the fractal dimensions were investigated.
The results show that the fractal dimension D1 ranges from 2.
44 to 2.
85, D2 ranges from 2.
09 to 2.
15 and D3 ranges from 2.
35 to 2.
48.
D2 and D3 have a good positive correlation.
The pore system studied mainly consists of organic pores and microfractures, with the percentage of micropores being 50.
38%.
TOC has a positive relationship with porosity and D3 due to the development of organic pores.
D3 has a positive correlation with gas saturation.
With increased D3, median pore size shows a decreasing trend and an increase in permeability and porosity, demonstrating that D3 has a large effect on pore size distribution and the heterogeneity of pore size.
In general, D3 has a better correlation with petrophysical and petrochemical parameters.
Fractal theory can be applied to better understand the pore evolution, pore size distribution and fluid storage capacity of shale reservoirs.

Related Results

EffectiveFracturing Technology of Normal Pressure Shale Gas Wells
EffectiveFracturing Technology of Normal Pressure Shale Gas Wells
ABSTRACT There is abundant normal pressure shale gas resource in China. However, it is hard to acquire commercial breakthroughs because of the relative low initia...
Comparisons of Pore Structure for Unconventional Tight Gas, Coalbed Methane and Shale Gas Reservoirs
Comparisons of Pore Structure for Unconventional Tight Gas, Coalbed Methane and Shale Gas Reservoirs
Extended abstract Tight sands gas, coalbed methane and shale gas are three kinds of typical unconventional natural gas. With the decrease of conventional oil and gas...
Geological Characteristics of Shale Reservoir of Pingdiquan Formation in Huoshaoshan Area, Junggar Basin
Geological Characteristics of Shale Reservoir of Pingdiquan Formation in Huoshaoshan Area, Junggar Basin
Unconventional oil and gas, represented by shale gas and shale oil, have occupied an important position in global energy. The rapid growth of shale gas and shale oil production sho...
Colorado Rockies Yield an Intriguing Oil-Ring Accumulation
Colorado Rockies Yield an Intriguing Oil-Ring Accumulation
Abstract The McCallum Unit anticline, located near Walden in Jackson County, Colo., possesses highly unusual fluid characteristics because the produced gas is 92 per...
STUDY OF MICROSCALE PORE STRUCTURE AND FRACTURING ON THE EXAMPLE OF CHINA SHALE FIELD
STUDY OF MICROSCALE PORE STRUCTURE AND FRACTURING ON THE EXAMPLE OF CHINA SHALE FIELD
Accurate characterization of pores and fractures in shale reservoirs is the theoretical basis for effective exploration and development of shale oil and gas. Currently, the scienti...
Coupling between Source Rock and Reservoir of Shale Gas in Wufeng-Longmaxi Formation in Sichuan Basin, South China
Coupling between Source Rock and Reservoir of Shale Gas in Wufeng-Longmaxi Formation in Sichuan Basin, South China
In order to analyze the main factors controlling shale gas accumulation and to predict the potential zone for shale gas exploration, the heterogeneous characteristics of the source...

Back to Top