Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Olive Leaf Extract Modulates Quorum Sensing Genes and Biofilm Formation in Multi-Drug Resistant Pseudomonas aeruginosa

View through CrossRef
Biofilm acts as a complex barrier against antibiotics. In this study, we investigated the inhibitory activities of Olea europaea (olive) leaves Camellia sinensis (green tea), Styrax benzoin, Ocimum basilicum, Humulus lupulus, Ruta graveolens, and Propolis extracts on the biofilm formation, pyocyanin production, and twitching motility of Pseudomonas aeruginosa isolates. Moreover, we investigated the effect of olive leaf extract on the transcription of some biofilm related genes. A total of 204 isolates of Pseudomonas were collected from different Egyptian hospitals. A susceptibility test, carried out using the disc diffusion method, revealed that 49% of the isolates were multidrug-resistant. More than 90% of the isolates were biofilm-forming, of which 26% were strong biofilm producers. At subinhibitory concentrations, green tea and olive leaf extracts had the highest biofilm inhibitory effects with 84.8% and 82.2%, respectively. The expression levels of lasI, lasR, rhlI, and rhlR treated with these extracts were significantly reduced (p < 0.05) by around 97–99% compared to untreated isolates. This study suggests the ability of olive leaf extract to reduce the biofilm formation and virulence factor production of P. aeruginosa through the down regulation of quorum sensing (QS) genes. This may help in reducing our dependence on antibiotics and to handle biofilm-related infections of opportunistic pathogens more efficiently.
Title: Olive Leaf Extract Modulates Quorum Sensing Genes and Biofilm Formation in Multi-Drug Resistant Pseudomonas aeruginosa
Description:
Biofilm acts as a complex barrier against antibiotics.
In this study, we investigated the inhibitory activities of Olea europaea (olive) leaves Camellia sinensis (green tea), Styrax benzoin, Ocimum basilicum, Humulus lupulus, Ruta graveolens, and Propolis extracts on the biofilm formation, pyocyanin production, and twitching motility of Pseudomonas aeruginosa isolates.
Moreover, we investigated the effect of olive leaf extract on the transcription of some biofilm related genes.
A total of 204 isolates of Pseudomonas were collected from different Egyptian hospitals.
A susceptibility test, carried out using the disc diffusion method, revealed that 49% of the isolates were multidrug-resistant.
More than 90% of the isolates were biofilm-forming, of which 26% were strong biofilm producers.
At subinhibitory concentrations, green tea and olive leaf extracts had the highest biofilm inhibitory effects with 84.
8% and 82.
2%, respectively.
The expression levels of lasI, lasR, rhlI, and rhlR treated with these extracts were significantly reduced (p < 0.
05) by around 97–99% compared to untreated isolates.
This study suggests the ability of olive leaf extract to reduce the biofilm formation and virulence factor production of P.
aeruginosa through the down regulation of quorum sensing (QS) genes.
This may help in reducing our dependence on antibiotics and to handle biofilm-related infections of opportunistic pathogens more efficiently.

Related Results

Cloning, purification, and enzymatic activity of the quorum sensing signal synthase RhlI
Cloning, purification, and enzymatic activity of the quorum sensing signal synthase RhlI
Quorum sensing is a bacterial cell‐cell communication system that functions through the synthesis, secretion, and detection of signaling molecules called autoinducers. Quorum sensi...
Secondary metabolites produced during Aspergillus fumigatus and Pseudomonas aeruginosa biofilm formation
Secondary metabolites produced during Aspergillus fumigatus and Pseudomonas aeruginosa biofilm formation
AbstractIn Cystic Fibrosis (CF), mucus plaques are formed in the patient’s lung, creating a hypoxic condition and a propitious environment for colonization and persistence of many ...
Bacterial LomR Induces the Vibriophage VP882 VqmA-Directed Quorum-Sensing Lysogeny-Lysis Transition
Bacterial LomR Induces the Vibriophage VP882 VqmA-Directed Quorum-Sensing Lysogeny-Lysis Transition
SUMMARYThe bacterial cell-cell communication process called quorum sensing enables groups of bacteria to synchronously alter behavior in response to changes in cell population dens...
Optogenetic Modulation of a Productive Biofilm for Improved Biotransformation
Optogenetic Modulation of a Productive Biofilm for Improved Biotransformation
&lt;p&gt;Biofilm as a living catalysts has been exploited for the production of biofuels and bioelectricity in microbial fuel cells (MFCs) as well as in the synthesis of bu...
Thyroid-Modulating Activities of Olive and Its Polyphenols: A Systematic Review
Thyroid-Modulating Activities of Olive and Its Polyphenols: A Systematic Review
Olive oil, which is commonly used in the Mediterranean diet, is known for its health benefits related to the reduction of the risks of cancer, coronary heart disease, hypertension,...
Role of NaCl and Glutamine on Biofilm Production from Pseudomonas aeruginosa
Role of NaCl and Glutamine on Biofilm Production from Pseudomonas aeruginosa
Pseudomonas aeruginosa is an opportunistic pathogen capable of forming antibiotic-resistant biofilms, contributing to persistent infections and treatment failure. Environmental fac...
Evolution of Antimicrobial Resistance in Community vs. Hospital-Acquired Infections
Evolution of Antimicrobial Resistance in Community vs. Hospital-Acquired Infections
Abstract Introduction Hospitals are high-risk environments for infections. Despite the global recognition of these pathogens, few studies compare microorganisms from community-acqu...
Prevalence and risk factors of Pseudomonas aeruginosa colonization
Prevalence and risk factors of Pseudomonas aeruginosa colonization
AbstractPseudomonas aeruginosa (P. aeruginosa) is one of the most concerning pathogens due to its multidrug resistance. P. aeruginosa can be a part of the normal commensal flora of...

Back to Top