Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Metabolic diversity and aero-tolerance in anammox bacteria from geochemically distinct aquifers

View through CrossRef
AbstractBackgroundAnaerobic ammonium oxidation (anammox) is important for converting bioavailable nitrogen into dinitrogen gas, particularly in carbon poor environments. Yet, the diversity and prevalence of anammox bacteria in the terrestrial subsurface – a typically oligotrophic environment – is little understood across different geochemical conditions. To determine the distribution and activity of anammox bacteria across a range of aquifer lithologies and physicochemistries, we analysed 16S rRNA genes, metagenomes and metatranscriptomes, and quantified hydrazine synthase genes and transcripts sampled from 59 groundwater wells distributed over 1 240 km2.ResultsData indicate that anammox-associated bacteria (class Brocadiae) and the anammox process are prevalent in aquifers (identified in aquifers with sandy-gravel, sand-silt and volcanic lithologies). While Brocadiae diversity decreased with increasing DO, Brocadiae 16S rRNA genes and hydrazine synthase genes and transcripts (hydrazine synthase, hzsB) were detected across a wide range of bulk groundwater dissolved oxygen (DO) concentrations (0 – 10 mg/L). Anammox genes and transcripts (hzsB) correlated significantly with those involved in bacterial and archaeal ammonia oxidation (ammonia monooxygenase, amoA), which could represent a major source of nitrite for anammox. Differences in anammox community composition were strongly associated with DO and bore depth (and to a lesser extent pH and phosphate), revealing niche differentiation among anammox bacteria in groundwater that was largely driven by water oxygen contents, and not ammonium/nitrite. Eight Brocadiae genomes (63-95% estimated completeness) reconstructed from a subset of groundwater sites belong to 2 uncharacterized families and 6 novel species (based on average nucleotide identity). Distinct groups of these genomes dominated the anammox-associated community at dysoxic and oxic sites, further reflecting the influence of DO on Brocadiae composition. Six of the genomes (dominating dysoxic or oxic sites) have genes characteristic of anammox (hydrazine synthase and/or dehydrogenase). These genes, in addition to aerotolerance genes, belonging to four Brocadiae genomes, were transcriptionally active, although transcript numbers clearly highest in dyoxic groundwater.ConclusionsOur findings indicate anammox bacteria contribute to loss of fixed N across diverse anoxic-to-oxic aquifer conditions, and that this is likely supported by nitrite from aerobic ammonia oxidation. Results provide an insight into the distribution and activity of anammox bacteria across distinct aquifer physicochemisties.
Title: Metabolic diversity and aero-tolerance in anammox bacteria from geochemically distinct aquifers
Description:
AbstractBackgroundAnaerobic ammonium oxidation (anammox) is important for converting bioavailable nitrogen into dinitrogen gas, particularly in carbon poor environments.
Yet, the diversity and prevalence of anammox bacteria in the terrestrial subsurface – a typically oligotrophic environment – is little understood across different geochemical conditions.
To determine the distribution and activity of anammox bacteria across a range of aquifer lithologies and physicochemistries, we analysed 16S rRNA genes, metagenomes and metatranscriptomes, and quantified hydrazine synthase genes and transcripts sampled from 59 groundwater wells distributed over 1 240 km2.
ResultsData indicate that anammox-associated bacteria (class Brocadiae) and the anammox process are prevalent in aquifers (identified in aquifers with sandy-gravel, sand-silt and volcanic lithologies).
While Brocadiae diversity decreased with increasing DO, Brocadiae 16S rRNA genes and hydrazine synthase genes and transcripts (hydrazine synthase, hzsB) were detected across a wide range of bulk groundwater dissolved oxygen (DO) concentrations (0 – 10 mg/L).
Anammox genes and transcripts (hzsB) correlated significantly with those involved in bacterial and archaeal ammonia oxidation (ammonia monooxygenase, amoA), which could represent a major source of nitrite for anammox.
Differences in anammox community composition were strongly associated with DO and bore depth (and to a lesser extent pH and phosphate), revealing niche differentiation among anammox bacteria in groundwater that was largely driven by water oxygen contents, and not ammonium/nitrite.
Eight Brocadiae genomes (63-95% estimated completeness) reconstructed from a subset of groundwater sites belong to 2 uncharacterized families and 6 novel species (based on average nucleotide identity).
Distinct groups of these genomes dominated the anammox-associated community at dysoxic and oxic sites, further reflecting the influence of DO on Brocadiae composition.
Six of the genomes (dominating dysoxic or oxic sites) have genes characteristic of anammox (hydrazine synthase and/or dehydrogenase).
These genes, in addition to aerotolerance genes, belonging to four Brocadiae genomes, were transcriptionally active, although transcript numbers clearly highest in dyoxic groundwater.
ConclusionsOur findings indicate anammox bacteria contribute to loss of fixed N across diverse anoxic-to-oxic aquifer conditions, and that this is likely supported by nitrite from aerobic ammonia oxidation.
Results provide an insight into the distribution and activity of anammox bacteria across distinct aquifer physicochemisties.

Related Results

Increased replication of dissimilatory nitrate-reducing bacteria leads to decreased anammox bioreactor performance
Increased replication of dissimilatory nitrate-reducing bacteria leads to decreased anammox bioreactor performance
Abstract Background Anaerobic ammonium oxidation (anammox) is a biological process employed to remove reactive nitrogen from wastewater. While a sub...
Research Progress,Problems and Future Prospects of A New Combined Anaerobic Ammonia Oxidation and Nitrogen Removal Process
Research Progress,Problems and Future Prospects of A New Combined Anaerobic Ammonia Oxidation and Nitrogen Removal Process
Anaerobic ammonium oxidation (Anammox) is a cost-effective and efficient process for nitrogen removal, which has attracted widespread attention in the field of wastewater treatment...
Increased Replication of Dissimilatory Nitrate-Reducing Bacteria Leads to Decreased Anammox Bioreactor Performance
Increased Replication of Dissimilatory Nitrate-Reducing Bacteria Leads to Decreased Anammox Bioreactor Performance
AbstractBackgroundAnaerobic ammonium oxidation (anammox) is a biological process employed to remove reactive nitrogen from wastewater. While a substantial body of literature descri...
Metagenomics Response of Anaerobic Ammonium Oxidation (anammox) Bacteria to Bio-Refractory Humic Substances in Wastewater
Metagenomics Response of Anaerobic Ammonium Oxidation (anammox) Bacteria to Bio-Refractory Humic Substances in Wastewater
Anammox-based processes have been widely applied for the treatment of wastewater (e.g., wastewater irrigation systems and constructed wetland) which consists of bio-refractory humi...
Deciphering bacterial interactions via DSF-regulated public goods in an anammox community
Deciphering bacterial interactions via DSF-regulated public goods in an anammox community
Abstract Background: Bacterial interaction and communication via quorum sensing (QS) received extensively attention, as it can coordinate bacterial behavior and activity th...
Nitrogen removal efficiency and microbial community analysis of ANAMMOX biofilter at ambient temperature
Nitrogen removal efficiency and microbial community analysis of ANAMMOX biofilter at ambient temperature
An upflow anaerobic biofilter (AF) was developed to investigate anaerobic ammonium-oxidizing (ANAMMOX) efficiency in treating low-strength wastewater at ambient temperature (15.3–2...
Experimental determination of Anammox decay coefficient
Experimental determination of Anammox decay coefficient
AbstractThis paper describes an experimental method used to evaluate the anaerobic ammonium oxidation (Anammox) decay coefficient by means of a batch test. The test was carried out...

Back to Top