Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Urokinase-dependent plasminogen activation is required for efficient skeletal muscle regeneration in vivo

View through CrossRef
Plasminogen activators urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA) are extracellular proteases involved in various tissue remodeling processes. A requirement for uPA activity in skeletal myogenesis was recently demonstrated in vitro. The role of plasminogen activators in skeletal muscle regeneration in vivo in wild-type, uPA-deficient, and tPA-deficient mice is investigated here. Wild-type and tPA−/− mice completely repaired experimentally damaged skeletal muscle. In contrast, uPA−/− mice had a severe regeneration defect, with decreased recruitment of blood-derived monocytes to the site of injury and with persistent myotube degeneration. In addition, uPA-deficient mice accumulated fibrin in the degenerating muscle fibers; however, the defibrinogenation of uPA-deficient mice resulted in a correction of the muscle regeneration defect. A similar severe regeneration deficit with persistent fibrin deposition was also reproducible in plasminogen-deficient mice after injury, suggesting that fibrinolysis by uPA-mediated plasminogen activation plays a fundamental role in skeletal muscle regeneration. In conclusion, the uPA-plasmin system is identified as a critical component of the mammalian skeletal muscle regeneration process, possibly because it prevents intramuscular fibrin accumulation and contributes to the adequate inflammatory response after injury. These studies demonstrate the requirement of an extracellular proteolytic cascade during muscle regeneration in vivo.
Title: Urokinase-dependent plasminogen activation is required for efficient skeletal muscle regeneration in vivo
Description:
Plasminogen activators urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA) are extracellular proteases involved in various tissue remodeling processes.
A requirement for uPA activity in skeletal myogenesis was recently demonstrated in vitro.
The role of plasminogen activators in skeletal muscle regeneration in vivo in wild-type, uPA-deficient, and tPA-deficient mice is investigated here.
Wild-type and tPA−/− mice completely repaired experimentally damaged skeletal muscle.
In contrast, uPA−/− mice had a severe regeneration defect, with decreased recruitment of blood-derived monocytes to the site of injury and with persistent myotube degeneration.
In addition, uPA-deficient mice accumulated fibrin in the degenerating muscle fibers; however, the defibrinogenation of uPA-deficient mice resulted in a correction of the muscle regeneration defect.
A similar severe regeneration deficit with persistent fibrin deposition was also reproducible in plasminogen-deficient mice after injury, suggesting that fibrinolysis by uPA-mediated plasminogen activation plays a fundamental role in skeletal muscle regeneration.
In conclusion, the uPA-plasmin system is identified as a critical component of the mammalian skeletal muscle regeneration process, possibly because it prevents intramuscular fibrin accumulation and contributes to the adequate inflammatory response after injury.
These studies demonstrate the requirement of an extracellular proteolytic cascade during muscle regeneration in vivo.

Related Results

Poster 247: Muscle ERRγ Overexpression Mitigates the Muscle Atrophy after ACL injury
Poster 247: Muscle ERRγ Overexpression Mitigates the Muscle Atrophy after ACL injury
Objectives: Anterior cruciate ligament (ACL) reconstruction is the 6th most common orthopedic procedure performed in the United States (1,2). There is substantial evidence to sugge...
SUMMARY
SUMMARY
SUMMARYThe purpose of the present monograph is to give an account of the distribution of fibrinolytic components in the organism, with special reference to the tissue activator of ...
Are Cervical Ribs Indicators of Childhood Cancer? A Narrative Review
Are Cervical Ribs Indicators of Childhood Cancer? A Narrative Review
Abstract A cervical rib (CR), also known as a supernumerary or extra rib, is an additional rib that forms above the first rib, resulting from the overgrowth of the transverse proce...
5. All That glitters is not gold
5. All That glitters is not gold
Abstract Introduction Inflammatory muscle disease is a rare but well-recognised manifestation of systemic vasculitis. It can pre...
P2Y1R and P2Y2R: potential molecular triggers in muscle regeneration
P2Y1R and P2Y2R: potential molecular triggers in muscle regeneration
AbstractMuscle regeneration is indispensable for skeletal muscle health and daily life when injury, muscular disease, and aging occur. Among the muscle regeneration, muscle stem ce...
Correlation between female body mass and functional movements and skeletal muscle mass
Correlation between female body mass and functional movements and skeletal muscle mass
Objective: To investigate the correlation between body mass and functional movements with skeletal muscle mass and skeletal muscle distribution in women, to determine the associati...
Comparative metabolism of plasminogen glycoforms I and II in the alloxan-diabetic rabbit
Comparative metabolism of plasminogen glycoforms I and II in the alloxan-diabetic rabbit
The metabolism of plasminogen glycoforms I and II was measured in alloxan-induced diabetic and in age-matched control rabbits. Radiolabeled plasminogen I and II were degraded signi...
Plasminogen interactions with platelets in plasma
Plasminogen interactions with platelets in plasma
In this report we used a fluorescent flow cytometry-based assay to examine plasminogen binding to platelets in plasma. Our data indicate that platelets activated in platelet-rich p...

Back to Top