Javascript must be enabled to continue!
Broadband silicon-based tunable metamaterial microfluidic sensor
View through CrossRef
Tunable metamaterial absorbers play an important role in terahertz imaging and detection. We propose a multifunctional metamaterial absorber based on doped silicon. By introducing resonance and impedance matching into the absorber, a broadband absorption greater than 90% in the range of 0.8–10 THz is achieved. At the same time, the light regulation characteristics of the doped semiconductor are introduced into the absorber, and the precise amplitude control can be achieved in the range of 0.1–1.2 THz by changing the pump luminous flux. In addition, based on the principle of light-regulating the concentration of doped silicon carriers, the medium-doped silicon material is replaced by a highly doped silicon material, and a sensor with a sensitivity of up to 500 GHz/RIU is realized by combining the wave absorber with the microfluidic control. Finally, the broadband absorption characteristics and sensing performance of alcohol and water on the prepared device are verified by experiments, indicating that the absorber may have great potential in the field of sensor detection.
Title: Broadband silicon-based tunable metamaterial microfluidic sensor
Description:
Tunable metamaterial absorbers play an important role in terahertz imaging and detection.
We propose a multifunctional metamaterial absorber based on doped silicon.
By introducing resonance and impedance matching into the absorber, a broadband absorption greater than 90% in the range of 0.
8–10 THz is achieved.
At the same time, the light regulation characteristics of the doped semiconductor are introduced into the absorber, and the precise amplitude control can be achieved in the range of 0.
1–1.
2 THz by changing the pump luminous flux.
In addition, based on the principle of light-regulating the concentration of doped silicon carriers, the medium-doped silicon material is replaced by a highly doped silicon material, and a sensor with a sensitivity of up to 500 GHz/RIU is realized by combining the wave absorber with the microfluidic control.
Finally, the broadband absorption characteristics and sensing performance of alcohol and water on the prepared device are verified by experiments, indicating that the absorber may have great potential in the field of sensor detection.
Related Results
Dynamic stochastic modeling for inertial sensors
Dynamic stochastic modeling for inertial sensors
Es ampliamente conocido que los modelos de error para sensores inerciales tienen dos componentes: El primero es un componente determinista que normalmente es calibrado por el fabri...
EVALUASI DAMPAK PROGRAM BROADBAND LEARNING CENTER DI TAMAN PRESTASI SURABAYA
EVALUASI DAMPAK PROGRAM BROADBAND LEARNING CENTER DI TAMAN PRESTASI SURABAYA
Broadband Learning Center adalah program pelatihan komputer gratis yang disediakan oleh Pemerintah Kota Surabaya yang bertujuan untuk menjawab permasalahan di Surabaya seperti masy...
Tunable grapheme amplitude based broadband electromagnetically-induced-transparency-like metamaterial
Tunable grapheme amplitude based broadband electromagnetically-induced-transparency-like metamaterial
Metamaterials, composed of subwavelength resonators, have extraordinary electromagnetic properties which rely on the sizes and shapes of the resonance structures rather than their ...
Broadband Access and Health Outcomes in FCC Priority Counties: A Longitudinal Analysis
Broadband Access and Health Outcomes in FCC Priority Counties: A Longitudinal Analysis
Background: The relationship between broadband access and health outcomes is an emerging field of interest within public health research. In an increasingly digital world, it is im...
Resonator-Inspired Metamaterial Sensor: Design and Experimental Validation for Measuring Thickness of Multi-Layered Structures
Resonator-Inspired Metamaterial Sensor: Design and Experimental Validation for Measuring Thickness of Multi-Layered Structures
A digit 8-shaped resonator inspired metamaterial is proposed herein for sensor applications. The resonator is surrounded by a ground frame and excited by a microstrip feedline. The...
Tunable Ultra-Broadband Terahertz Metamaterial Absorbers Based on Complementary Split Ring-Shaped Graphene
Tunable Ultra-Broadband Terahertz Metamaterial Absorbers Based on Complementary Split Ring-Shaped Graphene
Abstract
In the design of tunable broadband terahertz (THz) metamaterial absorbers based on graphene, simplifying the gating structure to control the Fermi energy of graphe...
Polarization dependent high refractive index metamaterial with metallic dielectric grating structure in infrared band
Polarization dependent high refractive index metamaterial with metallic dielectric grating structure in infrared band
According to the theory of high refractive index of metamaterials, a composite structure of metal dielectric grating was designed to achieve high refractive index in infrared band....
Highly tunable low frequency metamaterial cavity for vibration localization
Highly tunable low frequency metamaterial cavity for vibration localization
AbstractMetamaterial cavity has gathered much attention recently due to its capability of localizing vibration energy. Despite the active research, however, there are still big tec...

