Javascript must be enabled to continue!
Mechanical properties of biorenewable fiber/plastic composites
View through CrossRef
AbstractPlastic fiber composites, consisting of polypropylene (PP) or polyethylene (PE), and pinewood, big blue stem (BBS), soybean hulls, or distillers dried grain and solubles (DDGS), were prepared by extrusion. Young's modulus, tensile and flexural strengths, melt flow, shrinkage, and impact energy, with respect to the type, amount, and size of fiber on composites, were evaluated. Young's moduli under tensile load of wood, BBS, and soybean‐hull fiber composites, compared with those of pure plastic controls, were either comparable or higher. Tensile strength significantly decreased for all the PP/fiber composites when compared with that of the control. Strength of BBS fiber composites was higher than or comparable to that of wood. When natural fibers were added there was a significant decrease in the melt flow index for both plastic/fiber composites. There was no significant difference in the shrinkage of all fiber/plastic composites compared to that of controls. BBS/PE plastic composites resulted in higher notched impact strength than that of wood or soybean‐hull fiber composites. There was significant reduction in the unnotched impact strength compared to that of controls. BBS has the potential to be used as reinforcing materials for low‐cost composites. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2484–2493, 2004
Title: Mechanical properties of biorenewable fiber/plastic composites
Description:
AbstractPlastic fiber composites, consisting of polypropylene (PP) or polyethylene (PE), and pinewood, big blue stem (BBS), soybean hulls, or distillers dried grain and solubles (DDGS), were prepared by extrusion.
Young's modulus, tensile and flexural strengths, melt flow, shrinkage, and impact energy, with respect to the type, amount, and size of fiber on composites, were evaluated.
Young's moduli under tensile load of wood, BBS, and soybean‐hull fiber composites, compared with those of pure plastic controls, were either comparable or higher.
Tensile strength significantly decreased for all the PP/fiber composites when compared with that of the control.
Strength of BBS fiber composites was higher than or comparable to that of wood.
When natural fibers were added there was a significant decrease in the melt flow index for both plastic/fiber composites.
There was no significant difference in the shrinkage of all fiber/plastic composites compared to that of controls.
BBS/PE plastic composites resulted in higher notched impact strength than that of wood or soybean‐hull fiber composites.
There was significant reduction in the unnotched impact strength compared to that of controls.
BBS has the potential to be used as reinforcing materials for low‐cost composites.
© 2004 Wiley Periodicals, Inc.
J Appl Polym Sci 93: 2484–2493, 2004.
Related Results
Physico-Mechanical Behaviors of Chemically Treated Natural Fibers Reinforced Hybrid Polypropylene Composites
Physico-Mechanical Behaviors of Chemically Treated Natural Fibers Reinforced Hybrid Polypropylene Composites
The goal of current research is to replace synthetic materials with natural, biodegradable, and renewable ones. Natural fiber composites are extensively studied due to their unique...
Mechanical Properties of GF/CF Hybrid ABS Composite by DFFIM
Mechanical Properties of GF/CF Hybrid ABS Composite by DFFIM
GF reinforced polymer composites to improve the mechanical properties by increasing fiber content, but there is a limit. On the contrary, CF reinforced polymer composites are super...
Investigation on the Effect of Process Parameters on Mechanical Properties of Vetiver Fiber Reinforced LDPE Composites
Investigation on the Effect of Process Parameters on Mechanical Properties of Vetiver Fiber Reinforced LDPE Composites
Natural fibers (NFs) are extensively used for the ecological concern of synthetic fibers. The benefits of NFs over man-made fibers are their easy accessibility, renewability, light...
High performance bio-based composites : mechanical and environmental durability
High performance bio-based composites : mechanical and environmental durability
The presented work is a part of the ongoing effort on the development of high performance bio-based composites with enhanced durability, under static and dynamic mechanical loading...
Study of Tensile Strength of Opuntia Ficus Indica Fiber Reinforced Epoxy Composites
Study of Tensile Strength of Opuntia Ficus Indica Fiber Reinforced Epoxy Composites
In this present study, naturally available opuntia ficus indica (cactus) fiber is used, as reinforcing material. Cactus fiber belongs to the family cactaceae, which is reported to ...
Unidirectional fibre reinforced geopolymer matrix composites
Unidirectional fibre reinforced geopolymer matrix composites
<p>Geopolymers have been suggested in the literature as matrix materials for fibre reinforced composites due to a unique combination of low-temperature synthesis and high tem...
Preparation and Properties of Wheat Straw Fiber-polypropylene Composites. Part II. Investigation of Surface Treatments on the Thermo-mechanical and Rheological Properties of the Composites
Preparation and Properties of Wheat Straw Fiber-polypropylene Composites. Part II. Investigation of Surface Treatments on the Thermo-mechanical and Rheological Properties of the Composites
Composites made of polypropylene (PP) and wheat straw fiber treated by alkalization, acetylation, and maleic anhydride polypropylene (MAPP) were prepared, and the dynamic mechanica...
The Physicomechanical and Interfacial Properties of the Vetiveria Zizanioides Fiber Reinforced Polymer Composites
The Physicomechanical and Interfacial Properties of the Vetiveria Zizanioides Fiber Reinforced Polymer Composites
The effects of chemical treatment and vetiveria zizanioides (vetiver) loading on the physicomechanical, morphological, and weather tests of the vetiver fiber (VF)-filled polypropyl...

