Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Entropy and the Brain: An Overview

View through CrossRef
Entropy is a powerful tool for quantification of the brain function and its information processing capacity. This is evident in its broad domain of applications that range from functional interactivity between the brain regions to quantification of the state of consciousness. A number of previous reviews summarized the use of entropic measures in neuroscience. However, these studies either focused on the overall use of nonlinear analytical methodologies for quantification of the brain activity or their contents pertained to a particular area of neuroscientific research. The present study aims at complementing these previous reviews in two ways. First, by covering the literature that specifically makes use of entropy for studying the brain function. Second, by highlighting the three fields of research in which the use of entropy has yielded highly promising results: the (altered) state of consciousness, the ageing brain, and the quantification of the brain networks’ information processing. In so doing, the present overview identifies that the use of entropic measures for the study of consciousness and its (altered) states led the field to substantially advance the previous findings. Moreover, it realizes that the use of these measures for the study of the ageing brain resulted in significant insights on various ways that the process of ageing may affect the dynamics and information processing capacity of the brain. It further reveals that their utilization for analysis of the brain regional interactivity formed a bridge between the previous two research areas, thereby providing further evidence in support of their results. It concludes by highlighting some potential considerations that may help future research to refine the use of entropic measures for the study of brain complexity and its function. The present study helps realize that (despite their seemingly differing lines of inquiry) the study of consciousness, the ageing brain, and the brain networks’ information processing are highly interrelated. Specifically, it identifies that the complexity, as quantified by entropy, is a fundamental property of conscious experience, which also plays a vital role in the brain’s capacity for adaptation and therefore whose loss by ageing constitutes a basis for diseases and disorders. Interestingly, these two perspectives neatly come together through the association of entropy and the brain capacity for information processing.
Title: Entropy and the Brain: An Overview
Description:
Entropy is a powerful tool for quantification of the brain function and its information processing capacity.
This is evident in its broad domain of applications that range from functional interactivity between the brain regions to quantification of the state of consciousness.
A number of previous reviews summarized the use of entropic measures in neuroscience.
However, these studies either focused on the overall use of nonlinear analytical methodologies for quantification of the brain activity or their contents pertained to a particular area of neuroscientific research.
The present study aims at complementing these previous reviews in two ways.
First, by covering the literature that specifically makes use of entropy for studying the brain function.
Second, by highlighting the three fields of research in which the use of entropy has yielded highly promising results: the (altered) state of consciousness, the ageing brain, and the quantification of the brain networks’ information processing.
In so doing, the present overview identifies that the use of entropic measures for the study of consciousness and its (altered) states led the field to substantially advance the previous findings.
Moreover, it realizes that the use of these measures for the study of the ageing brain resulted in significant insights on various ways that the process of ageing may affect the dynamics and information processing capacity of the brain.
It further reveals that their utilization for analysis of the brain regional interactivity formed a bridge between the previous two research areas, thereby providing further evidence in support of their results.
It concludes by highlighting some potential considerations that may help future research to refine the use of entropic measures for the study of brain complexity and its function.
The present study helps realize that (despite their seemingly differing lines of inquiry) the study of consciousness, the ageing brain, and the brain networks’ information processing are highly interrelated.
Specifically, it identifies that the complexity, as quantified by entropy, is a fundamental property of conscious experience, which also plays a vital role in the brain’s capacity for adaptation and therefore whose loss by ageing constitutes a basis for diseases and disorders.
Interestingly, these two perspectives neatly come together through the association of entropy and the brain capacity for information processing.

Related Results

Brain Organoids, the Path Forward?
Brain Organoids, the Path Forward?
Photo by Maxim Berg on Unsplash INTRODUCTION The brain is one of the most foundational parts of being human, and we are still learning about what makes humans unique. Advancements ...
[RETRACTED] Gro-X Brain Reviews - Is Gro-X Brain A Scam? v1
[RETRACTED] Gro-X Brain Reviews - Is Gro-X Brain A Scam? v1
[RETRACTED]➢Item Name - Gro-X Brain➢ Creation - Natural Organic Compound➢ Incidental Effects - NA➢ Accessibility - Online➢ Rating - ⭐⭐⭐⭐⭐➢ Click Here To Visit - Official Website - ...
Entropy and Wealth
Entropy and Wealth
While entropy was introduced in the second half of the 19th century in the international vocabulary as a scientific term, in the 20th century it became common in colloquial use. Po...
Brain Biochemistry and Its Disease
Brain Biochemistry and Its Disease
The human brain is one of the important organs in the human body. It is the most complex of all organs. The brain is an organ composed of billions of nerve cells. It has parts of t...
Hydatid Disease of The Brain Parenchyma: A Systematic Review
Hydatid Disease of The Brain Parenchyma: A Systematic Review
Abstarct Introduction Isolated brain hydatid disease (BHD) is an extremely rare form of echinococcosis. A prompt and timely diagnosis is a crucial step in disease management. This ...
Metastable Oscillatory Modes as a Signature of Entropy Management in the Brain
Metastable Oscillatory Modes as a Signature of Entropy Management in the Brain
Entropy management, central to the Free Energy Principle, requires a process that temporarily shifts brain activity toward states of lower or higher entropy. Metastable synchroniza...
Cross-Subject Emotion Recognition Using Fused Entropy Features of EEG
Cross-Subject Emotion Recognition Using Fused Entropy Features of EEG
Emotion recognition based on electroencephalography (EEG) has attracted high interest in fields such as health care, user experience evaluation, and human–computer interaction (HCI...
Entropy-guided sevoflurane administration during cardiopulmonary bypass surgery in the paediatric population
Entropy-guided sevoflurane administration during cardiopulmonary bypass surgery in the paediatric population
Background Maintaining optimal anesthetic depth during cardiopulmonary bypass (CPB) in pediatric patients is challenging due to altered physiology and unreliable conven...

Back to Top