Javascript must be enabled to continue!
Bone Laser Patterning to Decipher Cells Organization
View through CrossRef
Laser patterning of implant materials for bone tissue engineering purposes has shown to be a promising technique to control cell properties such as adhesion or differentiation, resulting in an enhanced osteointegration. However, the perspective of patterning the bone tissue side interface to generate microstructure effects has never been investigated. In the present study, three different laser-generated patterns were machined on the bone surface with the aim to identify the best surface morphology compatible with osteogenic-related cells recolonization. The laser patterned bone tissue was characterized by electron scanning microscopy and confocal microscopy in order to obtain a comprehensive picture of the bone surface morphology. Cortical bone patterning impact upon cell compatibility and cytoskeleton rearrangement to the patterned surfaces was performed with Stromal Cells from Apical Papilla (SCAPs). Results indicated that laser machining had no detrimental effect upon consecutively seeded cells metabolism. Orientation assays revealed that surface patterning characterized by larger hatch distances was correlated with a higher cell cytoskeletal conformation to the laser-machined patterns. For the first time, to our knowledge, bone is considered and assessed here as a potentially engineered-improvable biological interface. Further studies shall focus on in vivo implications of this direct patterning.
Title: Bone Laser Patterning to Decipher Cells Organization
Description:
Laser patterning of implant materials for bone tissue engineering purposes has shown to be a promising technique to control cell properties such as adhesion or differentiation, resulting in an enhanced osteointegration.
However, the perspective of patterning the bone tissue side interface to generate microstructure effects has never been investigated.
In the present study, three different laser-generated patterns were machined on the bone surface with the aim to identify the best surface morphology compatible with osteogenic-related cells recolonization.
The laser patterned bone tissue was characterized by electron scanning microscopy and confocal microscopy in order to obtain a comprehensive picture of the bone surface morphology.
Cortical bone patterning impact upon cell compatibility and cytoskeleton rearrangement to the patterned surfaces was performed with Stromal Cells from Apical Papilla (SCAPs).
Results indicated that laser machining had no detrimental effect upon consecutively seeded cells metabolism.
Orientation assays revealed that surface patterning characterized by larger hatch distances was correlated with a higher cell cytoskeletal conformation to the laser-machined patterns.
For the first time, to our knowledge, bone is considered and assessed here as a potentially engineered-improvable biological interface.
Further studies shall focus on in vivo implications of this direct patterning.
Related Results
Poster 107: The Use of Coacervate Sustained Release System to Identify the Most Potent BMP for Bone Regeneration
Poster 107: The Use of Coacervate Sustained Release System to Identify the Most Potent BMP for Bone Regeneration
Objectives: Bone morphogenetic proteins (BMPs) belong to the transforming growth factor superfamily that were first discovered by Marshall Urist. There are 14 BMPs identified to da...
Arhgap21 Expression in Bone Marrow Niche Is Crucial for Hematopoietic Progenitor Homing and Short Term Reconstitution after Transplantation
Arhgap21 Expression in Bone Marrow Niche Is Crucial for Hematopoietic Progenitor Homing and Short Term Reconstitution after Transplantation
Abstract
The microenvironment of the bone marrow (BM) is essential for retention and migration of hematopoietic progenitor cells. ARHGAP21 is a negative regulator of...
The irradiated human mandible
The irradiated human mandible
Mandibular bone is known to be susceptible to irradiation damage, especially when radiation dose exceeds 50 Gy. This can result in compromised wound healing and ultimately osteorad...
Double resonant sum-frequency generation in an external-cavity under high-efficiency frequency conversion
Double resonant sum-frequency generation in an external-cavity under high-efficiency frequency conversion
In recent years, more than 90% of the signal laser power can be up-converted based on the high-efficiency double resonant external cavity sum-frequency generation (SFG), especially...
p62 Signaling Is Increased in Multiple Myeloma Microenvironment.
p62 Signaling Is Increased in Multiple Myeloma Microenvironment.
Abstract
The bone microenvironment plays a critical role in promoting both tumor growth and bone destruction in myeloma (MM). Marrow stromal cells produce factors, w...
Inhibition of Calcitonin Gene-Related Peptide and Insulin-Like Growth Factor: A Potential New Therapeutic Strategy To Reduce Bone Pain in Bone Metastases of Breast Cancer.
Inhibition of Calcitonin Gene-Related Peptide and Insulin-Like Growth Factor: A Potential New Therapeutic Strategy To Reduce Bone Pain in Bone Metastases of Breast Cancer.
Abstract
Bone pain caused by bone metastases is one of the most common complications in patients with breast cancer. However, the precise molecular mechanism of bone...
Abstract 1490: Elucidating the effect of glutamine metabolism in breast to bone metastasis
Abstract 1490: Elucidating the effect of glutamine metabolism in breast to bone metastasis
Abstract
Bone-metastatic lesions will develop in approximately 65-75% of patients with metastatic breast cancer and are associated with high morbidity and mortality....
Excimer Laser Micromachining of MEMS Materials
Excimer Laser Micromachining of MEMS Materials
Conventional photolithography-based microfabrication techniques are limited to two-dimensional fabrication and only particular materials can be used. Excimer laser micromachining e...

