Javascript must be enabled to continue!
On an extension of the Hardy-Hilbert theorem
View through CrossRef
A weighted Hardy-Hilbert’s inequality with the parameter
λ
of form \documentclass{aastex}
\usepackage{amsbsy}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{mathrsfs}
\usepackage{pifont}
\usepackage{stmaryrd}
\usepackage{textcomp}
\usepackage{upgreek}
\usepackage{portland,xspace}
\usepackage{amsmath,amsxtra}
\usepackage{bbm}
\pagestyle{empty}
\DeclareMathSizes{10}{9}{7}{6}
\begin{document}
$$\sum\limits_{m = 1}^\infty {\sum\limits_{n = 1}^\infty {\frac{{a_m b_n }}{{(m + n)^\lambda }}} < B^* (\lambda )\left( {\sum\limits_{n = 1}^\infty {n^{1 - \lambda } a_{a_n }^p } } \right)^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} \left( {\sum\limits_{n = 1}^\infty {n^{1 - \lambda } b_n^q } } \right)^q }$$
\end{document} is established by introducing two parameters s and λ, where \documentclass{aastex}
\usepackage{amsbsy}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{mathrsfs}
\usepackage{pifont}
\usepackage{stmaryrd}
\usepackage{textcomp}
\usepackage{upgreek}
\usepackage{portland,xspace}
\usepackage{amsmath,amsxtra}
\usepackage{bbm}
\pagestyle{empty}
\DeclareMathSizes{10}{9}{7}{6}
\begin{document}
$$\tfrac{1}{p} + \tfrac{1}{q} = 1,p \geqq q > 1,1 - \tfrac{q}{p} < \lambda \leqq 2,B^* (\lambda ) = B(\lambda - (1 - \tfrac{{2 - \lambda }}{p}),1 - \tfrac{{2 - \lambda }}{p})$$
\end{document} is the beta function.
B
*(λ) is proved to be best possible. A stronger form of this inequality is obtained by means of the Euler-Maclaurin summation formula.
Akademiai Kiado Zrt.
Title: On an extension of the Hardy-Hilbert theorem
Description:
A weighted Hardy-Hilbert’s inequality with the parameter
λ
of form \documentclass{aastex}
\usepackage{amsbsy}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{mathrsfs}
\usepackage{pifont}
\usepackage{stmaryrd}
\usepackage{textcomp}
\usepackage{upgreek}
\usepackage{portland,xspace}
\usepackage{amsmath,amsxtra}
\usepackage{bbm}
\pagestyle{empty}
\DeclareMathSizes{10}{9}{7}{6}
\begin{document}
$$\sum\limits_{m = 1}^\infty {\sum\limits_{n = 1}^\infty {\frac{{a_m b_n }}{{(m + n)^\lambda }}} < B^* (\lambda )\left( {\sum\limits_{n = 1}^\infty {n^{1 - \lambda } a_{a_n }^p } } \right)^{{1 \mathord{\left/ {\vphantom {1 p}} \right.
\kern-\nulldelimiterspace} p}} \left( {\sum\limits_{n = 1}^\infty {n^{1 - \lambda } b_n^q } } \right)^q }$$
\end{document} is established by introducing two parameters s and λ, where \documentclass{aastex}
\usepackage{amsbsy}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{mathrsfs}
\usepackage{pifont}
\usepackage{stmaryrd}
\usepackage{textcomp}
\usepackage{upgreek}
\usepackage{portland,xspace}
\usepackage{amsmath,amsxtra}
\usepackage{bbm}
\pagestyle{empty}
\DeclareMathSizes{10}{9}{7}{6}
\begin{document}
$$\tfrac{1}{p} + \tfrac{1}{q} = 1,p \geqq q > 1,1 - \tfrac{q}{p} < \lambda \leqq 2,B^* (\lambda ) = B(\lambda - (1 - \tfrac{{2 - \lambda }}{p}),1 - \tfrac{{2 - \lambda }}{p})$$
\end{document} is the beta function.
B
*(λ) is proved to be best possible.
A stronger form of this inequality is obtained by means of the Euler-Maclaurin summation formula.
Related Results
Achievements on Matrix Hilbert spaces and reproducing kernel matrix Hilbert spaces
Achievements on Matrix Hilbert spaces and reproducing kernel matrix Hilbert spaces
Abstract
Hilbert space is a very powerfull mathematical tool that has proven to be incredibily useful in a wide range of applications. Matrix Hilebrt space is a new fram...
Hilbert bundles with ends
Hilbert bundles with ends
Given a countable metric space, we can consider its end. Then a basis of a Hilbert space indexed by the metric space defines an end of the Hilbert space, which is a new notion and ...
Thomas Hardy
Thomas Hardy
Thomas Hardy was born in Lower Bockhampton, Dorset, in 1840 and, with brief interruptions, continued to live in and around Dorchester until his death in 1928. His work was intimate...
A Seminar Title On the History and Evolution of Agricultural Extension in the Ethiopia Country
A Seminar Title On the History and Evolution of Agricultural Extension in the Ethiopia Country
Agricultural extension service began work in Ethiopia since 1931, during the establishment of Ambo Agricultural School. But a formal Agricultural extension started since Alemaya Im...
O “estado da arte” do ensino em Extensão Rural no Brasil
O “estado da arte” do ensino em Extensão Rural no Brasil
Este artigo tem como objetivo realizar uma análise do “estado da arte” do ensino em Extensão Rural no Brasil, considerando o panorama da oferta da disciplina, as tendências acadêmi...
Representation and duality for Hilbert algebras
Representation and duality for Hilbert algebras
Abstract
In this paper we introduce a special kind of ordered topological spaces, called Hilbert spaces. We prove that the category of Hilbert algebras with semi-hom...
Weighted composition operators on Hardy–Smirnov spaces
Weighted composition operators on Hardy–Smirnov spaces
Abstract
Operators of type f → ψf ◦ φ acting on function spaces are called weighted composition operators. If the weight function ψ is the constant function 1, then ...
Hilbert superspace
Hilbert superspace
A theory of Hilbert superspace over an infinite dimensional Grassmann algebra Λ is given. Axioms of Hilbert superspace are given and it is proven that a Hilbert superspace is isomo...

