Javascript must be enabled to continue!
Disintegration Characteristics of Remolded Granite Residual Soil with Different Moisture Contents
View through CrossRef
Granite residual soil (GRS) has prominent disintegration characteristics which have induced various geological disasters and engineering problems. The initial moisture content is believed to affect the disintegration of GRS significantly. To explore the effects of the initial moisture content on the soil disintegration characteristics and disintegration mechanism, disintegration tests were performed on remolded GRS with different initial moisture contents via the balance method, and the quantitative disintegration indices were corrected, considering the effects of water-absorption weight gain, in combination with a parallel water-absorption test. The disintegration characteristics and mechanism were thoroughly investigated, starting with the disintegration process curves and disintegration morphology, and combined with strength theory, X-ray diffraction (XRD) and X-ray fluorescence (XRF), the matric suction test, and the triaxial shear test. The results are as follows. (1) The corrected method improves the accuracy of the quantitative disintegration evaluation. (2) During the two disintegration stages, the forms of disintegration are dispersive fragmentation and progressive or block separation, and the soil matric suction and weakening of intergranular joining forces, respectively, are the drivers of disintegration. The first stage is usually completed within 1.5–2 min, and the disintegration ratio is usually within 20%. (3) The trends of change within the disintegration during the two stages show opposite water-content-dependent modes, and the soil samples with lower moisture contents have better water stability and slower disintegration in the second stage. The average disintegration rate of the soil with a moisture content of 24.4% in the first and second stages was approximately 1/5 and 13 times, respectively, that of the soil with a moisture content of 6.1%; these values can be rendered as 0.049%/s and 0.82%/s, respectively. The results provide some theoretical references for soil and water conservation and engineering applications in the GRS field.
Title: Disintegration Characteristics of Remolded Granite Residual Soil with Different Moisture Contents
Description:
Granite residual soil (GRS) has prominent disintegration characteristics which have induced various geological disasters and engineering problems.
The initial moisture content is believed to affect the disintegration of GRS significantly.
To explore the effects of the initial moisture content on the soil disintegration characteristics and disintegration mechanism, disintegration tests were performed on remolded GRS with different initial moisture contents via the balance method, and the quantitative disintegration indices were corrected, considering the effects of water-absorption weight gain, in combination with a parallel water-absorption test.
The disintegration characteristics and mechanism were thoroughly investigated, starting with the disintegration process curves and disintegration morphology, and combined with strength theory, X-ray diffraction (XRD) and X-ray fluorescence (XRF), the matric suction test, and the triaxial shear test.
The results are as follows.
(1) The corrected method improves the accuracy of the quantitative disintegration evaluation.
(2) During the two disintegration stages, the forms of disintegration are dispersive fragmentation and progressive or block separation, and the soil matric suction and weakening of intergranular joining forces, respectively, are the drivers of disintegration.
The first stage is usually completed within 1.
5–2 min, and the disintegration ratio is usually within 20%.
(3) The trends of change within the disintegration during the two stages show opposite water-content-dependent modes, and the soil samples with lower moisture contents have better water stability and slower disintegration in the second stage.
The average disintegration rate of the soil with a moisture content of 24.
4% in the first and second stages was approximately 1/5 and 13 times, respectively, that of the soil with a moisture content of 6.
1%; these values can be rendered as 0.
049%/s and 0.
82%/s, respectively.
The results provide some theoretical references for soil and water conservation and engineering applications in the GRS field.
Related Results
Experimental Research on Shear Strength of Remolded Debris Flow Structures
Experimental Research on Shear Strength of Remolded Debris Flow Structures
Abstract
To investigate the strength characteristics of remolded debris flow structures and influencing factors, Jiangjia Gully debris flow deposits in the Yunnan pr...
Large-scale Soil Moisture Monitoring: A New Approach
Large-scale Soil Moisture Monitoring: A New Approach
Soil moisture is a critical factor for understanding the interactions and feedback between the atmosphere and Earth's surface, particularly through energy and water cycles. It also...
Soil Moisture Retrieval Over Agricultural Fields Using Synthetic Aperture Radar (SAR) Data
Soil Moisture Retrieval Over Agricultural Fields Using Synthetic Aperture Radar (SAR) Data
Soil moisture is vital for agricultural fields as it determines water availability for crops, directly affecting plant growth and productivity. It regulates nutrient uptake, root d...
Parameterization of soil evaporation and coupled transport of moisture and heat for arid and semiarid regions
Parameterization of soil evaporation and coupled transport of moisture and heat for arid and semiarid regions
Soil moisture is an important parameter in numerical weather forecasting and climate projection studies, and it is extremely important for arid and semiarid areas. Different from t...
Granite Landscapes Transformed
Granite Landscapes Transformed
An analysis of granite landscapes would not be complete if the modifying human factor were ignored (Godard, 1977). Over the millennia humans have used the resources provided by gra...
On the Rock-basins in the Granite of the Dartmoor District, Devonshire
On the Rock-basins in the Granite of the Dartmoor District, Devonshire
In this Memoir the origin of Rock-basins in the Granite of Dartmoor and its vicinity is alone considered; and it is not attempted to draw therefrom any law as to the manner of the ...
Estimating top-soil moisture at high spatiotemporal resolution in a highly complex landscape
Estimating top-soil moisture at high spatiotemporal resolution in a highly complex landscape
Soil moisture is a critical variable in precision agriculture, hydrological modeling, and environmental monitoring, influencing crop productivity, irrigation planning, hydrological...
Project SoMMet - Metrology for multi-scale monitoring of soil moisture
Project SoMMet - Metrology for multi-scale monitoring of soil moisture
Soil moisture is one of the Essential Climate Variables as defined by the WMO Global Climate Observing System. Several soil moisture observation systems exist on multiple scales, h...

