Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Poly(1,3-Butylene Fumerate) and Poly(1,3-Butylene Fumerate)-co-(1,3-Butylene Maleate) as Electrospun Scaffold Materials

View through CrossRef
AbstractPoly(butylene fumerate) (PBF) and poly(butylene fumerate)-co-(butylene maleate) (PBFcBM) have been synthesized from the ring opening and condensation reactions of maleic anhydride (MA) and 1,3-butanediol (BD). PBFcBM synthesized in this way contains greater than 85% maleate groups. Both PBF and PBFcBM have a glass transition temperature (Tg) below room temperature and therefore cannot be electrospun using the conventional electrospinning process as a non-porous film results. To facilitate production of nonwoven micro- and nano-fiber mats, a UV-source (λ=356 nm) was used in combination with a photoinitator loaded polymer solution to initiate the crosslinking reaction of the fumerate and maleate functional groups as the fibers were produced. The resulting non-woven fiber mats are potentially suitable scaffolds for tissue engineering and drug delivery application.
Title: Poly(1,3-Butylene Fumerate) and Poly(1,3-Butylene Fumerate)-co-(1,3-Butylene Maleate) as Electrospun Scaffold Materials
Description:
AbstractPoly(butylene fumerate) (PBF) and poly(butylene fumerate)-co-(butylene maleate) (PBFcBM) have been synthesized from the ring opening and condensation reactions of maleic anhydride (MA) and 1,3-butanediol (BD).
PBFcBM synthesized in this way contains greater than 85% maleate groups.
Both PBF and PBFcBM have a glass transition temperature (Tg) below room temperature and therefore cannot be electrospun using the conventional electrospinning process as a non-porous film results.
To facilitate production of nonwoven micro- and nano-fiber mats, a UV-source (λ=356 nm) was used in combination with a photoinitator loaded polymer solution to initiate the crosslinking reaction of the fumerate and maleate functional groups as the fibers were produced.
The resulting non-woven fiber mats are potentially suitable scaffolds for tissue engineering and drug delivery application.

Related Results

Synthesis and Investigation into Apatite-forming Ability of Hydroxyapatite/Chitosan-based Scaffold
Synthesis and Investigation into Apatite-forming Ability of Hydroxyapatite/Chitosan-based Scaffold
In this study, porous scaffolds were fabricated using inorganic material-hydroxyapatite and chitosan for bone-tissue engineering. The combination of hydroxyapatite and chitosan may...
Esters of Maleic Anhydride as Both a New and Old Material for Tissue Engineering
Esters of Maleic Anhydride as Both a New and Old Material for Tissue Engineering
AbstractMany publications have examined the biodegradable polymer poly(propylene fumerate) (PPF) for use in tissue engineering applications. We have examined a similar crosslinkabl...
Evaluation of the Effective Diffusivity of a Freeform Fabricated Scaffold Using Computational Simulation
Evaluation of the Effective Diffusivity of a Freeform Fabricated Scaffold Using Computational Simulation
In scaffold-based tissue engineering, sufficient oxygen and nutrient supply into cells within a scaffold is essential to increase cell viability and the proliferation rate. General...
3D-printed nanohydroxyapatite/methylacrylylated silk fibroin scaffold for repairing rat skull defects
3D-printed nanohydroxyapatite/methylacrylylated silk fibroin scaffold for repairing rat skull defects
AbstractThe repair of bone defects remains a major challenge in the clinic, and treatment requires bone grafts or bone replacement materials. Existing biomaterials have many limita...
Potential of Electrospun Nanofibers for Biomedical and Dental Applications
Potential of Electrospun Nanofibers for Biomedical and Dental Applications
Electrospinning is a versatile technique that has gained popularity for various biomedical applications in recent years. Electrospinning is being used for fabricating nanofibers fo...
Scaffold Hopping with Generative Reinforcement Learning
Scaffold Hopping with Generative Reinforcement Learning
Scaffold hopping – the design of novel scaffolds for existing lead candidates – is a multi-faceted and non-trivial task, for medicinal chemists and computational approaches alike. ...
Scaffold Hopping with Generative Reinforcement Learning
Scaffold Hopping with Generative Reinforcement Learning
Scaffold hopping – the design of novel scaffolds for existing lead candidates – is a multi-faceted and non-trivial task, for medicinal chemists and computational approaches alike. ...
In Vitro Cytotoxicity Test Reveals Non-toxic of Waste-based Scaffold on Human Hepatocyte Cells
In Vitro Cytotoxicity Test Reveals Non-toxic of Waste-based Scaffold on Human Hepatocyte Cells
Scaffold, as one of the components for bone tissue engineering, requires formulated biomaterials that are both structurally and compositively similar to bone composition. Among oth...

Back to Top