Javascript must be enabled to continue!
Unveiling Early Pathologies in ALS: Insights from iPSC-Derived Brain Organoids
View through CrossRef
A hexanucleotide repeat expansion (HRE) in C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Human brain imaging and experimental studies indicate early changes in brain structure and connectivity in C9-ALS/FTD, even before symptom onset. As these early disease phenotypes remain incompletely understood, in this thesis we generated iPSC-derived cerebral organoid models from C9-ALS/FTD patients, presymptomatic C9ORF72-HRE (C9-HRE) carriers, and controls. Our work revealed the presence of all three C9-HRE-related molecular pathologies and developmental stage-dependent size phenotypes in cerebral organoids from C9-ALS/FTD patients. In addition, single-cell RNA sequencing identified changes in cell type abundance and distribution in C9-ALS/FTD organoids, including a reduction in the number of deep layer cortical neurons and the distribution of neural progenitors. Further, molecular and cellular analyses and patch-clamp electrophysiology detected various changes in synapse structure and function. Intriguingly, organoids from all presymptomatic C9-HRE carriers displayed C9-HRE molecular pathology, whereas the extent to which more downstream cellular defects, as found in C9-ALS/FTD models, were detected varied for the different presymptomatic C9-HRE cases. Together, these results unveil early changes in 3D human brain tissue organization and synaptic connectivity in C9-ALS/FTD that likely constitute initial pathologies crucial for understanding disease onset and the design of therapeutic strategies.
Title: Unveiling Early Pathologies in ALS: Insights from iPSC-Derived Brain Organoids
Description:
A hexanucleotide repeat expansion (HRE) in C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD).
Human brain imaging and experimental studies indicate early changes in brain structure and connectivity in C9-ALS/FTD, even before symptom onset.
As these early disease phenotypes remain incompletely understood, in this thesis we generated iPSC-derived cerebral organoid models from C9-ALS/FTD patients, presymptomatic C9ORF72-HRE (C9-HRE) carriers, and controls.
Our work revealed the presence of all three C9-HRE-related molecular pathologies and developmental stage-dependent size phenotypes in cerebral organoids from C9-ALS/FTD patients.
In addition, single-cell RNA sequencing identified changes in cell type abundance and distribution in C9-ALS/FTD organoids, including a reduction in the number of deep layer cortical neurons and the distribution of neural progenitors.
Further, molecular and cellular analyses and patch-clamp electrophysiology detected various changes in synapse structure and function.
Intriguingly, organoids from all presymptomatic C9-HRE carriers displayed C9-HRE molecular pathology, whereas the extent to which more downstream cellular defects, as found in C9-ALS/FTD models, were detected varied for the different presymptomatic C9-HRE cases.
Together, these results unveil early changes in 3D human brain tissue organization and synaptic connectivity in C9-ALS/FTD that likely constitute initial pathologies crucial for understanding disease onset and the design of therapeutic strategies.
Related Results
Brain Organoids, the Path Forward?
Brain Organoids, the Path Forward?
Photo by Maxim Berg on Unsplash
INTRODUCTION
The brain is one of the most foundational parts of being human, and we are still learning about what makes humans unique. Advancements ...
Fatty Acid-Treated Induced Pluripotent Stem Cell-Derived Human Cardiomyocytes Exhibit Adult Cardiomyocyte-Like Energy Metabolism Phenotypes
Fatty Acid-Treated Induced Pluripotent Stem Cell-Derived Human Cardiomyocytes Exhibit Adult Cardiomyocyte-Like Energy Metabolism Phenotypes
Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs) (iPSC-CMs) are a promising cell source for myocardial regeneration, disease modeling and drug assessment. Ho...
[RETRACTED] Gro-X Brain Reviews - Is Gro-X Brain A Scam? v1
[RETRACTED] Gro-X Brain Reviews - Is Gro-X Brain A Scam? v1
[RETRACTED]➢Item Name - Gro-X Brain➢ Creation - Natural Organic Compound➢ Incidental Effects - NA➢ Accessibility - Online➢ Rating - ⭐⭐⭐⭐⭐➢ Click Here To Visit - Official Website - ...
NEK1 haploinsufficiency impairs ciliogenesis in human iPSC-derived motoneurons and brain organoids
NEK1 haploinsufficiency impairs ciliogenesis in human iPSC-derived motoneurons and brain organoids
ABSTRACTPrimary cilia are microtubule-based organelles acting as specialized signalling antennae that respond to specific stimuli to maintain cellular integrity and homeostasis. Re...
Generation, interrogation, and future applications of microglia-containing brain organoids
Generation, interrogation, and future applications of microglia-containing brain organoids
Brain organoids encompass a large collection of in vitro stem cell–derived 3D culture systems that aim to recapitulate multiple aspects of in vivo brain development and function. F...
Modeling of Hypoxic Brain Injury through 3D Human Neural Organoids
Modeling of Hypoxic Brain Injury through 3D Human Neural Organoids
Brain organoids have emerged as a novel model system for neural development, neurodegenerative diseases, and human-based drug screening. However, the heterogeneous nature and immat...
Unbiased identification of cell identity in dense mixed neural cultures
Unbiased identification of cell identity in dense mixed neural cultures
Abstract
Induced pluripotent stem cell (iPSC) technology is revolutionizing cell biology. However, the variability between individual iPSC lines and the lack of efficient technolog...
Unbiased identification of cell identity in dense mixed neural cultures
Unbiased identification of cell identity in dense mixed neural cultures
Abstract
Induced pluripotent stem cell (iPSC) technology is revolutionizing cell biology. However, the variability between individual iPSC lines and the lack of efficient technolog...

