Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Self-Healing Performance of Smart Polymeric Coatings Modified with Tung Oil and Linalyl Acetate

View through CrossRef
This work focuses on the synthesis and characterization of polymeric smart self-healing coatings. A comparison of structural, thermal, and self-healing properties of two different polymeric coatings comprising distinct self-healing agents (tung oil and linalyl acetate) is studied to elucidate the role of self-healing agents in corrosion protection. Towards this direction, urea-formaldehyde microcapsules (UFMCs) loaded with tung oil (TMMCs) and linalyl acetate (LMMCs) were synthesized using the in-situ polymerization method. The synthesis of both LMMCs and TMMCs under identical experimental conditions (900 rpm, 55 °C) has resulted in a similar average particle size range (63–125 µm). The polymeric smart self-healing coatings were developed by reinforcing a polymeric matrix separately with a fixed amount of LMMCs (3 wt.% and 5 wt.%), and TMMCs (3 wt.% and 5 wt.%) referred to as LMCOATs and TMCOATs, respectively. The development of smart coatings (LMCOATs and TMCOATs) contributes to achieving decent thermal stability up to 450 °C. Electrochemical impedance spectroscopy (EIS) analysis indicates that the corrosion resistance of smart coatings increases with increasing concentration of the microcapsules (TMMCs, LMMCs) in the epoxy matrix reaching ~1 GΩ. As a comparison, LMCOATs containing 5 wt.% LMMCs demonstrate the best stability in the barrier properties than other developed coatings and can be considered for many potential applications.
Title: Self-Healing Performance of Smart Polymeric Coatings Modified with Tung Oil and Linalyl Acetate
Description:
This work focuses on the synthesis and characterization of polymeric smart self-healing coatings.
A comparison of structural, thermal, and self-healing properties of two different polymeric coatings comprising distinct self-healing agents (tung oil and linalyl acetate) is studied to elucidate the role of self-healing agents in corrosion protection.
Towards this direction, urea-formaldehyde microcapsules (UFMCs) loaded with tung oil (TMMCs) and linalyl acetate (LMMCs) were synthesized using the in-situ polymerization method.
The synthesis of both LMMCs and TMMCs under identical experimental conditions (900 rpm, 55 °C) has resulted in a similar average particle size range (63–125 µm).
The polymeric smart self-healing coatings were developed by reinforcing a polymeric matrix separately with a fixed amount of LMMCs (3 wt.
% and 5 wt.
%), and TMMCs (3 wt.
% and 5 wt.
%) referred to as LMCOATs and TMCOATs, respectively.
The development of smart coatings (LMCOATs and TMCOATs) contributes to achieving decent thermal stability up to 450 °C.
Electrochemical impedance spectroscopy (EIS) analysis indicates that the corrosion resistance of smart coatings increases with increasing concentration of the microcapsules (TMMCs, LMMCs) in the epoxy matrix reaching ~1 GΩ.
As a comparison, LMCOATs containing 5 wt.
% LMMCs demonstrate the best stability in the barrier properties than other developed coatings and can be considered for many potential applications.

Related Results

Self-Healing Performance of Multifunctional Polymeric Smart Coatings
Self-Healing Performance of Multifunctional Polymeric Smart Coatings
Multifunctional nanocomposite coatings were synthesized by reinforcing a polymeric matrix with halloysite nanotubes (HNTs) loaded with corrosion inhibitor (NaNO3) and urea formalde...
PROTECTIVE ABILITY OF TIN-NICKEL COATINGS
PROTECTIVE ABILITY OF TIN-NICKEL COATINGS
The calculation of the corrosion current of the steel – plating allowed us to estimate the protective properties and the porosity of the Tin-Nickel coatings. Measured in 3% NaCl so...
Performance of Self-Healing Cementitious Composites Using Aligned Tubular Healing Fiber
Performance of Self-Healing Cementitious Composites Using Aligned Tubular Healing Fiber
From the perspective of improving the self-healing method in construction, a tubular healing fiber was adopted as a container to improve the encapsulation capacity, which was avail...
Proton Polymer Electrolytes in Fuel Cell
Proton Polymer Electrolytes in Fuel Cell
The electrolyte is one of the main parts of a fuel cell. That is divided into liquid and solid and it is used in both Alkaline and acidulous PH. But with due to kind of electrolyte...
Polyvinyl Acetate, Alcohol, and Derivatives, Polystyrene, and Acrylics
Polyvinyl Acetate, Alcohol, and Derivatives, Polystyrene, and Acrylics
AbstractPolyvinyl acetate, the most widely used vinyl ester, is noted for its adhesion to substrates and high cold flow. Polyvinyl acetate serves as the precursor for polyvinyl alc...
Research Progress of Marine Anti-Fouling Coatings
Research Progress of Marine Anti-Fouling Coatings
The extended immersion of ships in seawater frequently results in biofouling, a condition characterized by the accumulation of marine organisms such as barnacles and algae. To comb...
Generative AI-Driven Smart Contract Optimization for Secure and Scalable Smart City Services
Generative AI-Driven Smart Contract Optimization for Secure and Scalable Smart City Services
Smart cities use advanced infrastructure and technology to improve the quality of life for their citizens. Collaborative services in smart cities are making the smart city ecosyste...
Reinventing Smart Water Management System through ICT and IoT Driven Solution for Smart Cities
Reinventing Smart Water Management System through ICT and IoT Driven Solution for Smart Cities
Purpose: Worldwide water scarcity is one of the major problems to deal with. Smart Cities also faces this challenging problem due to its ever-increasing population and limited sour...

Back to Top