Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Developmental regulation of p53-dependent radiation-induced thymocyte apoptosis in mice

View through CrossRef
SummaryThe production of T cell receptor αβ+ (TCRαβ+) T lymphocytes in the thymus is a tightly regulated process that can be monitored by the regulated expression of several surface molecules, including CD4, CD8, cKit, CD25 and the TCR itself, after TCR genes have been assembled from discrete V, D (for TCR-β) and J gene segments by a site-directed genetic recombination. Thymocyte differentiation is the result of a delicate balance between cell death and survival: developing thymocytes die unless they receive a positive signal to proceed to the next stage. This equilibrium is altered in response to various physiological or physical stresses such as ionizing radiation, which induces a massive p53-dependent apoptosis of CD4+CD8+ double-positive (DP) thymocytes. Interestingly, these cells are actively rearranging their TCR-α chain genes. To unravel an eventual link between V(D)J recombination activity and thymocyte radio-sensitivity, we analysed the dynamics of thymocyte apoptosis and regeneration following exposure of wild-type and p53-deficient mice to different doses of γ-radiation. p53-dependent radio-sensitivity was already found to be high in immature CD4−CD8− (double-negative, DN) cKit+CD25+ thymocytes, where TCR-β gene rearrangement is initiated. However, TCR-αβ−CD8+ immature single-positive thymocytes, an actively cycling intermediate population between the DN and DP stages, are the most radio-sensitive cells in the thymus, even though their apoptosis is only partially p53-dependent. Within the DP population, TCR-αβ+ thymocytes that completed TCR-α gene recombination are more radio-resistant than their TCR-αβ− progenitors. Finally, we found no correlation between p53 activation and thymocyte sensitivity to radiation-induced apoptosis.
Title: Developmental regulation of p53-dependent radiation-induced thymocyte apoptosis in mice
Description:
SummaryThe production of T cell receptor αβ+ (TCRαβ+) T lymphocytes in the thymus is a tightly regulated process that can be monitored by the regulated expression of several surface molecules, including CD4, CD8, cKit, CD25 and the TCR itself, after TCR genes have been assembled from discrete V, D (for TCR-β) and J gene segments by a site-directed genetic recombination.
Thymocyte differentiation is the result of a delicate balance between cell death and survival: developing thymocytes die unless they receive a positive signal to proceed to the next stage.
This equilibrium is altered in response to various physiological or physical stresses such as ionizing radiation, which induces a massive p53-dependent apoptosis of CD4+CD8+ double-positive (DP) thymocytes.
Interestingly, these cells are actively rearranging their TCR-α chain genes.
To unravel an eventual link between V(D)J recombination activity and thymocyte radio-sensitivity, we analysed the dynamics of thymocyte apoptosis and regeneration following exposure of wild-type and p53-deficient mice to different doses of γ-radiation.
p53-dependent radio-sensitivity was already found to be high in immature CD4−CD8− (double-negative, DN) cKit+CD25+ thymocytes, where TCR-β gene rearrangement is initiated.
However, TCR-αβ−CD8+ immature single-positive thymocytes, an actively cycling intermediate population between the DN and DP stages, are the most radio-sensitive cells in the thymus, even though their apoptosis is only partially p53-dependent.
Within the DP population, TCR-αβ+ thymocytes that completed TCR-α gene recombination are more radio-resistant than their TCR-αβ− progenitors.
Finally, we found no correlation between p53 activation and thymocyte sensitivity to radiation-induced apoptosis.

Related Results

Abstract 599: Id4 acts as a tumor suppressor by inducing apoptosis and senescence in p53-dependent manner
Abstract 599: Id4 acts as a tumor suppressor by inducing apoptosis and senescence in p53-dependent manner
Abstract The physiological mechanisms that can restore biological activity of mutant p53 is an area of high interest given that mutant p53 expression is observed in ...
Abstract 1728: Overactivation of tumor suppressor P53 in hepatocytes promotes hepatocarcinogenesis
Abstract 1728: Overactivation of tumor suppressor P53 in hepatocytes promotes hepatocarcinogenesis
Abstract Aim: p53 is a tumor suppressor and its dysfunction promotes carcinogenesis of several organs including the liver. Meanwhile, p53 is reported to be overactiv...
Jun Dimerization Protein 2 (JDP2) Increases p53 Transactivation by Decreasing MDM2
Jun Dimerization Protein 2 (JDP2) Increases p53 Transactivation by Decreasing MDM2
The AP-1 protein complex primarily consists of several proteins from the c-Fos, c-Jun, activating transcription factor (ATF), and Jun dimerization protein (JDP) families. JDP2 has ...
Data from Restoration of p53 Pathway by Nutlin-3 Induces Cell Cycle Arrest and Apoptosis in Human Rhabdomyosarcoma Cells
Data from Restoration of p53 Pathway by Nutlin-3 Induces Cell Cycle Arrest and Apoptosis in Human Rhabdomyosarcoma Cells
<div>Abstract<p><b>Purpose:</b> Seventy to eighty percent of rhabdomyosarcoma (RMS) tumors retain wild-type p53. The tumor suppressor p53 plays a central ro...
Data from Restoration of p53 Pathway by Nutlin-3 Induces Cell Cycle Arrest and Apoptosis in Human Rhabdomyosarcoma Cells
Data from Restoration of p53 Pathway by Nutlin-3 Induces Cell Cycle Arrest and Apoptosis in Human Rhabdomyosarcoma Cells
<div>Abstract<p><b>Purpose:</b> Seventy to eighty percent of rhabdomyosarcoma (RMS) tumors retain wild-type p53. The tumor suppressor p53 plays a central ro...
Id4 dependent acetylation restores mutant-p53 transcriptional activity
Id4 dependent acetylation restores mutant-p53 transcriptional activity
Abstract Background The mechanisms that can restore biological activity of mutant p53 are an area of high interest given that mutant p53 expressi...

Back to Top