Javascript must be enabled to continue!
Experimental Study on the Shear Behavior of Precast Wall Concrete Joints with/without Dowel Reinforcement
View through CrossRef
The precast shear wall behavior in the serviceability and ultimate limit states depends on the shear and shear-flexural behavior of the joints between the precast components or between the precast component and footing. This study presents a series of tests on the shear strength of joints, which were applied to the interface of precast shear walls. The tested parameters included the joint types, the numbers of shear keys, the existence of high strength steel bars inserted at the joints, and the levels of confining stress. The shear capacity, stiffness, and shear transfer mechanisms of these joints were investigated. It could be concluded that the epoxied and high strength reinforcing joints had consistently higher shear strength than that of dry and plain joints. For the specimens with an inclined angle at the end of the keys of less than 60 degrees, the width of the dry joint opening may be excessively large, resulting in large shear slip and the key not shearing-off under confining stress of less than 1.0 MPa. The tested results were compared with AASHTO and other design criteria. Several formulas regarding the joint shear capacities were also proposed according to the specifications and the tested results.
Title: Experimental Study on the Shear Behavior of Precast Wall Concrete Joints with/without Dowel Reinforcement
Description:
The precast shear wall behavior in the serviceability and ultimate limit states depends on the shear and shear-flexural behavior of the joints between the precast components or between the precast component and footing.
This study presents a series of tests on the shear strength of joints, which were applied to the interface of precast shear walls.
The tested parameters included the joint types, the numbers of shear keys, the existence of high strength steel bars inserted at the joints, and the levels of confining stress.
The shear capacity, stiffness, and shear transfer mechanisms of these joints were investigated.
It could be concluded that the epoxied and high strength reinforcing joints had consistently higher shear strength than that of dry and plain joints.
For the specimens with an inclined angle at the end of the keys of less than 60 degrees, the width of the dry joint opening may be excessively large, resulting in large shear slip and the key not shearing-off under confining stress of less than 1.
0 MPa.
The tested results were compared with AASHTO and other design criteria.
Several formulas regarding the joint shear capacities were also proposed according to the specifications and the tested results.
Related Results
Investigation of shear‐flexural behavior of precast joints in prestressed reinforced concrete
Investigation of shear‐flexural behavior of precast joints in prestressed reinforced concrete
AbstractThe behavior of precast concrete structures at the limit states of ultimate bearing capacity depends on the shear and shear‐flexural behavior of the joints between precast ...
Improvement of Seismic Performance of Ordinary Reinforced Partially Grouted Concrete Masonry Shear Walls
Improvement of Seismic Performance of Ordinary Reinforced Partially Grouted Concrete Masonry Shear Walls
Reinforced masonry constitutes about 10% of all low-rise construction in the US. Most of these structures are commercial and school buildings. It may also be used for multi-story h...
Preface: A SPECIAL ISSUE ON PROGRESS IN CIVIL ENGINEERING
Preface: A SPECIAL ISSUE ON PROGRESS IN CIVIL ENGINEERING
The Open Civil Engineering Journal, which is one of the most relevant international journals in civil engineering area,
wishes to promote the latest researches in engineering s...
Eurocode Shear Design of Coarse Recycled Aggregate Concrete: Reliability Analysis and Partial Factor Calibration
Eurocode Shear Design of Coarse Recycled Aggregate Concrete: Reliability Analysis and Partial Factor Calibration
This paper contributes to the definition of design clauses for coarse recycled aggregate concrete. One of the main reasons for scepticism towards recycled aggregate concrete is the...
Efficiency of Steel Fibers in Improving the Performance of Concrete Beams without Shear Reinforcement
Efficiency of Steel Fibers in Improving the Performance of Concrete Beams without Shear Reinforcement
This research aims to experimentally study the shear strength of steel fiber concrete beams without shear reinforcement (stirrups). Parameters of the study include two compressive ...
Optimization of magnetoelectricity in thickness shear mode LiNbO3/magnetostrictive laminated composite
Optimization of magnetoelectricity in thickness shear mode LiNbO3/magnetostrictive laminated composite
Magnetoelectric (ME) composites have recently attracted much attention and triggered a great number of research activities, owing to their potential applications in sensors and tra...
Casting and installation of segmental precast quadratic concrete driven geothermal energy piles
Casting and installation of segmental precast quadratic concrete driven geothermal energy piles
Geothermal energy pile foundations are used both for structural purposes and to provide sustainable, clean, and cost-effective ground energy for heating and cooling buildings [1]. ...
The Effect of Compression Reinforcement on the Shear Behavior of Concrete Beams with Hybrid Reinforcement
The Effect of Compression Reinforcement on the Shear Behavior of Concrete Beams with Hybrid Reinforcement
Abstract
This study examines the impact of steel compression reinforcement on the shear behavior of concrete beams reinforced with glass fiber reinforced polymer (GFRP) bar...

