Javascript must be enabled to continue!
Micro-Structures and High-Temperature Friction-Wear Performances of Laser Cladded Cr–Ni Coatings
View through CrossRef
Cr–Ni coatings with the mass ratios of 17% Cr–83% Ni, 20% Cr–80% Ni and 24% Cr–76% Ni were fabricated on H13 hot work mould steel using a laser cladding (LC). The surface–interface morphologies, chemical elements, surface roughness and phase composition of the obtained Cr–Ni coatings were analysed using a scanning electron microscope (SEM), energy disperse spectroscopy (EDS), atomic force microscope (AFM) and X–ray diffractometer (XRD), respectively. The friction–wear properties and wear rates of Cr–Ni coatings with the different mass ratios of Cr and Ni at 600 °C were investigated, and the worn morphologies and wear mechanism of Cr–Ni coatings were analysed. The results show that the phases of Cr–Ni coatings with mass ratios of 17% Cr–83% Ni, 20% Cr–80% Ni and 24% Cr–76% Ni are composed of Cr + Ni single-phases and their compounds at the different stoichiometry, the porosities on the Cr–Ni coatings increase with the Cr content increasing. The average coefficient of friction (COF) of 17% Cr–83% Ni, 20% Cr–80% Ni and 24% Cr–76% coatings are 1.10, 0.33 and 0.87, respectively, in which the average COF of 20% Cr–80% Ni coating is the lowest, exhibiting the better anti-friction performance. The wear rate of 17% Cr–83% Ni, 20% Cr–80% Ni and 24% Cr–76% Ni coatings is 4.533 × 10−6, 5.433 × 10−6, and 1.761 × 10−6 N−1·s−1, respectively, showing the wear resistance of Cr–Ni coatings at a high temperature increases with the Cr content, in which the wear rate is 24% Cr–76% Ni coating with the better reducing wear. The wear mechanism of 17% Cr–83% Ni and 20% Cr–80% Ni and 24% Cr–76% coatings at 600 °C is primarily adhesive wear, and that of 24% Cr–76% coating is also accompanied by oxidative wear.
Title: Micro-Structures and High-Temperature Friction-Wear Performances of Laser Cladded Cr–Ni Coatings
Description:
Cr–Ni coatings with the mass ratios of 17% Cr–83% Ni, 20% Cr–80% Ni and 24% Cr–76% Ni were fabricated on H13 hot work mould steel using a laser cladding (LC).
The surface–interface morphologies, chemical elements, surface roughness and phase composition of the obtained Cr–Ni coatings were analysed using a scanning electron microscope (SEM), energy disperse spectroscopy (EDS), atomic force microscope (AFM) and X–ray diffractometer (XRD), respectively.
The friction–wear properties and wear rates of Cr–Ni coatings with the different mass ratios of Cr and Ni at 600 °C were investigated, and the worn morphologies and wear mechanism of Cr–Ni coatings were analysed.
The results show that the phases of Cr–Ni coatings with mass ratios of 17% Cr–83% Ni, 20% Cr–80% Ni and 24% Cr–76% Ni are composed of Cr + Ni single-phases and their compounds at the different stoichiometry, the porosities on the Cr–Ni coatings increase with the Cr content increasing.
The average coefficient of friction (COF) of 17% Cr–83% Ni, 20% Cr–80% Ni and 24% Cr–76% coatings are 1.
10, 0.
33 and 0.
87, respectively, in which the average COF of 20% Cr–80% Ni coating is the lowest, exhibiting the better anti-friction performance.
The wear rate of 17% Cr–83% Ni, 20% Cr–80% Ni and 24% Cr–76% Ni coatings is 4.
533 × 10−6, 5.
433 × 10−6, and 1.
761 × 10−6 N−1·s−1, respectively, showing the wear resistance of Cr–Ni coatings at a high temperature increases with the Cr content, in which the wear rate is 24% Cr–76% Ni coating with the better reducing wear.
The wear mechanism of 17% Cr–83% Ni and 20% Cr–80% Ni and 24% Cr–76% coatings at 600 °C is primarily adhesive wear, and that of 24% Cr–76% coating is also accompanied by oxidative wear.
Related Results
Laser Cladded Surface Hardening Coating With Gradient of Mechanical Properties
Laser Cladded Surface Hardening Coating With Gradient of Mechanical Properties
The present dissertation “Laser Cladded Surface Hardening Coating with Gradient of Mechanical Properties” is devoted to the research of laser cladding process for obtaining high qu...
Effects of different factors on the friction and wear mechanical properties of titanium alloy materials with cortical bones at near service conditions
Effects of different factors on the friction and wear mechanical properties of titanium alloy materials with cortical bones at near service conditions
Abstract
Artificial joint is one of the most effective methods to treat joint injuries. The service performance of artificial joints is gradually bad due to the wear of art...
Effect of CeO2 addition on microstructure and tribological characteristics of laser cladded Cu10Al–MoS2 coating under oil lubrication
Effect of CeO2 addition on microstructure and tribological characteristics of laser cladded Cu10Al–MoS2 coating under oil lubrication
In order to improve the friction and wear properties of Cu10Al–MoS2 coating, the addition of CeO2 is one of the present research hot spots. In this work, Cu10Al–MoS2 coatings with ...
Effect of Laser Remelting on Friction-Wear Behaviors of Cold Sprayed Al Coatings in 3.5% NaCl Solution
Effect of Laser Remelting on Friction-Wear Behaviors of Cold Sprayed Al Coatings in 3.5% NaCl Solution
A cold sprayed Al coating on S355 structural steel was processed using a laser remelting (LR). The surface and cross-section morphologies, chemical compositions, and phases of as-o...
Microstructure, tribological performances, and wear mechanisms of laser-cladded TiC-reinforced NiMo coatings under grease-lubrication condition
Microstructure, tribological performances, and wear mechanisms of laser-cladded TiC-reinforced NiMo coatings under grease-lubrication condition
Abstract
NiMo-5%TiC, NiMo-15%TiC, and NiMo-25%TiC coatings were prepared on GCr15 steel by laser cladding (LC). The microstructure and the phases of the obtained coa...
Discrete element parameter calibration and wear characteristics analysis of soil-rotary tillage blade in gneiss mountainous area
Discrete element parameter calibration and wear characteristics analysis of soil-rotary tillage blade in gneiss mountainous area
Abstract
Aiming at the problems of fast wear and short service life of rotary tillage blade in gneiss mountainous area, and the lack of accurate and reliable discrete eleme...
The Micro-Tribological Behavior and Friction Mechanism of the Graphite/Cu Composites and Copper-coated Graphite-graphite/Cu Composites
The Micro-Tribological Behavior and Friction Mechanism of the Graphite/Cu Composites and Copper-coated Graphite-graphite/Cu Composites
Abstract
The ring-block tribological behavior of the graphite/Cu(G/Cu) composites and copper-coated graphite-graphite/Cu(CCG-G/Cu) were studied by observing the friction co...
Dependence of the structure and characteristics of a Russian alternative for AISI 304 stainless steel powder on the parameters of their laser cladding on substrates from low-carbon and structural steels
Dependence of the structure and characteristics of a Russian alternative for AISI 304 stainless steel powder on the parameters of their laser cladding on substrates from low-carbon and structural steels
Abstract
The work studies X8 CrNiSiMg 17-8-6 steel powder, a Russian alternative for AISI 304 steel, cladded by ytterbium fiber laser on two types of substrates: hea...


