Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Development and Analysis of novel Integrable Nonlinear Dynamical Systems on Quasi-One-Dimensional Lattices. Parametrically Driven Nonlinear System of Pseudo-Excitations on a Two-Leg Ladder Lattice

View through CrossRef
Following the main principles of developing the evolutionary nonlinear integrable systems on quasi-one-dimensional lattices, we suggest a novel nonlinear integrable system of parametrically driven pseudo-excitations on a regular two-leg ladder lattice. The initial (prototype) form of the system is derivable in the framework of semi-discrete zero-curvature equation with the spectral and evolution operators specified by the properly organized 3 × 3 square matrices. Although the lowest conserved local densities found via the direct recursive method do not prompt us the algebraic structure of system’s Hamiltonian function, but the heuristically substantiated search for the suitable two-stage transformation of prototype field functions to the physically motivated ones has allowed to disclose the physically meaningful nonlinear integrable system with time-dependent longitudinal and transverse inter-site coupling parameters. The time dependencies of inter-site coupling parameters in the transformed system are consistently defined in terms of the accompanying parametric driver formalized by the set of four homogeneous ordinary linear differential equations with the time-dependent coefficients. The physically meaningful parametrically driven nonlinear system permits its concise Hamiltonian formulation with the two pairs of field functions serving as the two pairs of canonically conjugated field amplitudes. The explicit example of oscillatory parametric drive is described in full mathematical details.
National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)
Title: Development and Analysis of novel Integrable Nonlinear Dynamical Systems on Quasi-One-Dimensional Lattices. Parametrically Driven Nonlinear System of Pseudo-Excitations on a Two-Leg Ladder Lattice
Description:
Following the main principles of developing the evolutionary nonlinear integrable systems on quasi-one-dimensional lattices, we suggest a novel nonlinear integrable system of parametrically driven pseudo-excitations on a regular two-leg ladder lattice.
The initial (prototype) form of the system is derivable in the framework of semi-discrete zero-curvature equation with the spectral and evolution operators specified by the properly organized 3 × 3 square matrices.
Although the lowest conserved local densities found via the direct recursive method do not prompt us the algebraic structure of system’s Hamiltonian function, but the heuristically substantiated search for the suitable two-stage transformation of prototype field functions to the physically motivated ones has allowed to disclose the physically meaningful nonlinear integrable system with time-dependent longitudinal and transverse inter-site coupling parameters.
The time dependencies of inter-site coupling parameters in the transformed system are consistently defined in terms of the accompanying parametric driver formalized by the set of four homogeneous ordinary linear differential equations with the time-dependent coefficients.
The physically meaningful parametrically driven nonlinear system permits its concise Hamiltonian formulation with the two pairs of field functions serving as the two pairs of canonically conjugated field amplitudes.
The explicit example of oscillatory parametric drive is described in full mathematical details.

Related Results

Unbounded Star Convergence in Lattices
Unbounded Star Convergence in Lattices
Let L be a vector lattice, "(" x_α ") " be a L-valued net, and x∈L . If |x_α-x|∧u→┴o 0 for every u ∈〖 L〗_+ then it is said that the net "(" x_α ")" unbounded order converges ...
Free mu-lattices
Free mu-lattices
A mu-lattice is a lattice with the property that every unary <br />polynomial has both a least and a greatest fix-point. In this paper<br />we define the quasivariety o...
Parametrically Induced Damping in a Cracked Rotor
Parametrically Induced Damping in a Cracked Rotor
The tendency to higher speeds in turbomachinery results in the design of more flexible shafts, which run at speeds above several of their natural frequencies. Due to stress concent...
All-optical soliton control in photonic lattices
All-optical soliton control in photonic lattices
Los solitones ópticos son paquetes de luz (haces y/o pulsos) que no se dispersan gracias al balance entre difracción/dispersión y no linealidad. Al propagarse e interactuar los uno...
Ambiguities in powder pattern indexing: A ternary lattice metric singularity
Ambiguities in powder pattern indexing: A ternary lattice metric singularity
A lattice metric singularity occurs when unit cells defining two (or more) lattices yield the identical set of unique calculated d-spacings. The existence of such singularities, th...
On Superization of Nonlinear Integrable Dynamical Systems
On Superization of Nonlinear Integrable Dynamical Systems
We study an interesting superization problem of integrable nonlinear dynamical systems on functional manifolds. As an example, we considered a quantum many-particle Schrödinger-Dav...
On Superization of Nonlinear Integrable Dynamical Systems
On Superization of Nonlinear Integrable Dynamical Systems
We study an interesting superization problem of integrable nonlinear dynamical systems on functional manifolds. As an example, we considered a quantum many-particle Schrödinger–Dav...

Back to Top