Javascript must be enabled to continue!
Genetic structure and biogeographic history of the Bicknell’s Thrush/ Gray-cheeked Thrush species complex
View through CrossRef
AbstractWe examined species limits, admixture, and genetic structure among populations in the Bicknell’s Thrush (Catharus bicknelli)–Gray-cheeked Thrush (C. minimus) species complex to establish the geographic and temporal context of speciation in this group, which is a model system in ecology and a high conservation priority. We obtained mitochondrial ND2 sequences from 186 Bicknell’s Thrushes, 77 Gray-cheeked Thrushes, and 55 individuals of their closest relative, the Veery (C. fuscescens), and genotyped a subset of individuals (n = 72) at 5,633 anonymous single nucleotide polymorphic (SNP) loci. Between-species sequence divergence was an order of magnitude greater than divergence within each species, divergence was dated to the late Pleistocene (420 kbp) based on Bayesian coalescence estimation, and a coalescent model (IMa) revealed almost no gene flow between species based on ND2. SNP data were consistent with mitochondrial results and revealed low levels of admixture among species (3 of 37 Bicknell’s Thrushes, no Gray-cheeked Thrushes, and no Veeries were >2% admixed). Species distribution models projected to the Last Glacial Maximum suggest that Bicknell’s Thrush and Gray-cheeked Thrush resided in primarily allopatric refugia in the late Pleistocene, consistent with the genetic data that support reproductive isolation over an extended period of time. Our genetic data suggest that both species underwent demographic expansions, possibly as they expanded out of Pleistocene refugia into their current ranges. We conclude that Bicknell’s Thrush and Gray-cheeked Thrush are 2 distinct species-level lineages despite low levels of Gray-cheeked Thrush introgression in Bicknell’s Thrushes, and divergence has been maintained by a long history of allopatry in subtly different habitats. Their unique phylogeography among boreal forest birds indicates that either cryptic species breaks in eastern North America are still undiscovered, or another factor, such as divergent natural selection, high migratory connectivity, or interspecific competition, played a role in their divergence.
Oxford University Press (OUP)
Title: Genetic structure and biogeographic history of the Bicknell’s Thrush/ Gray-cheeked Thrush species complex
Description:
AbstractWe examined species limits, admixture, and genetic structure among populations in the Bicknell’s Thrush (Catharus bicknelli)–Gray-cheeked Thrush (C.
minimus) species complex to establish the geographic and temporal context of speciation in this group, which is a model system in ecology and a high conservation priority.
We obtained mitochondrial ND2 sequences from 186 Bicknell’s Thrushes, 77 Gray-cheeked Thrushes, and 55 individuals of their closest relative, the Veery (C.
fuscescens), and genotyped a subset of individuals (n = 72) at 5,633 anonymous single nucleotide polymorphic (SNP) loci.
Between-species sequence divergence was an order of magnitude greater than divergence within each species, divergence was dated to the late Pleistocene (420 kbp) based on Bayesian coalescence estimation, and a coalescent model (IMa) revealed almost no gene flow between species based on ND2.
SNP data were consistent with mitochondrial results and revealed low levels of admixture among species (3 of 37 Bicknell’s Thrushes, no Gray-cheeked Thrushes, and no Veeries were >2% admixed).
Species distribution models projected to the Last Glacial Maximum suggest that Bicknell’s Thrush and Gray-cheeked Thrush resided in primarily allopatric refugia in the late Pleistocene, consistent with the genetic data that support reproductive isolation over an extended period of time.
Our genetic data suggest that both species underwent demographic expansions, possibly as they expanded out of Pleistocene refugia into their current ranges.
We conclude that Bicknell’s Thrush and Gray-cheeked Thrush are 2 distinct species-level lineages despite low levels of Gray-cheeked Thrush introgression in Bicknell’s Thrushes, and divergence has been maintained by a long history of allopatry in subtly different habitats.
Their unique phylogeography among boreal forest birds indicates that either cryptic species breaks in eastern North America are still undiscovered, or another factor, such as divergent natural selection, high migratory connectivity, or interspecific competition, played a role in their divergence.
Related Results
Division within the North American boreal forest: Ecological niche divergence between the Bicknell's Thrush (Catharus bicknelli) and Gray‐cheeked Thrush (C. minimus)
Division within the North American boreal forest: Ecological niche divergence between the Bicknell's Thrush (Catharus bicknelli) and Gray‐cheeked Thrush (C. minimus)
AbstractSister species that diverged in allopatry in similar environments are expected to exhibit niche conservatism. Using ecological niche modeling and a multivariate analysis of...
Composition and foraging behaviour of mixed‐species flocks led by the Grey‐cheeked Fulvetta in Fushan Experimental Forest, Taiwan
Composition and foraging behaviour of mixed‐species flocks led by the Grey‐cheeked Fulvetta in Fushan Experimental Forest, Taiwan
Thirty‐two species were recorded in mixed‐species bird flocks led by the Grey‐cheeked Fulvetta Alcippe morrisonia in Fushan Experimental Forest, Taiwan. Flocks averaged (± se) 5.8 ...
Impacts of man-made structures on marine biodiversity and species status - native & non-native species
Impacts of man-made structures on marine biodiversity and species status - native & non-native species
<p>Coastal environments are exposed to anthropogenic activities such as frequent marine traffic and restructuring, i.e., addition, removal or replacing with man-made structur...
Are Cervical Ribs Indicators of Childhood Cancer? A Narrative Review
Are Cervical Ribs Indicators of Childhood Cancer? A Narrative Review
Abstract
A cervical rib (CR), also known as a supernumerary or extra rib, is an additional rib that forms above the first rib, resulting from the overgrowth of the transverse proce...
Spatial and temporal stability in the genetic structure of a marine crab despite a biogeographic break
Spatial and temporal stability in the genetic structure of a marine crab despite a biogeographic break
AbstractElucidating the processes responsible for maintaining the population connectivity of marine benthic species mediated by larval dispersal remains a fundamental question in m...
Mechanisms of population differentiation in seabirds
Mechanisms of population differentiation in seabirds
AbstractDespite recent advances in population genetic theory and empirical research, the extent of genetic differentiation among natural populations of animals remains difficult to...
Likelihood of social-ecological genetic model
Likelihood of social-ecological genetic model
AbstractThe genetic structure of populations depends on two parallel processes - genetic and social-ecological - providing mutual information. Models that describe species’ respons...
The utility of transcriptomics in the conservation of sensitive and economically important species
The utility of transcriptomics in the conservation of sensitive and economically important species
The connection between the central dogma of biology [DNA --(Transcription)---› RNA –(Translation)--› Protein] and the 'omics' resources obtained from each molecule are now being ex...

