Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

A generalisation of two partition theorems of Andrews

View through CrossRef
In 1968 and 1969, Andrews proved two partition theorems of the Rogers-Ramanujan type which generalise Schur’s celebrated partition identity (1926). Andrews’ two generalisations of Schur’s theorem went on to become two of the most influential results in the theory of partitions, finding applications in combinatorics, representation theory and quantum algebra. In this paper we generalise both of Andrews’ theorems to overpartitions. The proofs use a new technique which consists in going back and forth from $q$-difference equations on generating functions to recurrence equations on their coefficients. En 1968 et 1969, Andrews a prouvé deux identités de partitions du type Rogers-Ramanujan qui généralisent le célèbre théorème de Schur (1926). Ces deux généralisations sont devenues deux des théorèmes les plus importants de la théorie des partitions, avec des applications en combinatoire, en théorie des représentations et en algèbre quantique. Dans ce papier, nous généralisons les deux théorèmes de Andrews aux surpartitions. Les preuves utilisent une nouvelle technique qui consiste à faire des allers-retours entre équations aux $q$-différences sur les séries génératrices et équations de récurrence sur leurs coefficients.
Centre pour la Communication Scientifique Directe (CCSD)
Title: A generalisation of two partition theorems of Andrews
Description:
In 1968 and 1969, Andrews proved two partition theorems of the Rogers-Ramanujan type which generalise Schur’s celebrated partition identity (1926).
Andrews’ two generalisations of Schur’s theorem went on to become two of the most influential results in the theory of partitions, finding applications in combinatorics, representation theory and quantum algebra.
In this paper we generalise both of Andrews’ theorems to overpartitions.
The proofs use a new technique which consists in going back and forth from $q$-difference equations on generating functions to recurrence equations on their coefficients.
En 1968 et 1969, Andrews a prouvé deux identités de partitions du type Rogers-Ramanujan qui généralisent le célèbre théorème de Schur (1926).
Ces deux généralisations sont devenues deux des théorèmes les plus importants de la théorie des partitions, avec des applications en combinatoire, en théorie des représentations et en algèbre quantique.
Dans ce papier, nous généralisons les deux théorèmes de Andrews aux surpartitions.
Les preuves utilisent une nouvelle technique qui consiste à faire des allers-retours entre équations aux $q$-différences sur les séries génératrices et équations de récurrence sur leurs coefficients.

Related Results

Loving Julie Andrews
Loving Julie Andrews
At the beginning of his recent collection of essays in queer studies, Jeffrey Escoffier makes the assertion at once portentous and banal that “the moment of acknowledging to onesel...
Dimensi Partisi pada Graf Hasil Operasi Korona Tingkat-k
Dimensi Partisi pada Graf Hasil Operasi Korona Tingkat-k
Graph theory is one of the subjects in Discrete Mathematics that have long been known and are widely applied in various fields. The topics that are often discussed in graph theory ...
Heat flux enhancement by regular surface protrusion in partitioned thermal convection
Heat flux enhancement by regular surface protrusion in partitioned thermal convection
We investigate the influence of the regular roughness of heated and cooled plates and adiabatic partition boards on the mean heat transport in a square Rayleigh–Bénard (RB) convect...
New Knowledge-Transmission Mechanisms Based Horizontal Collaborative Fuzzy Clustering Algorithms for Unequal-Length Time Series
New Knowledge-Transmission Mechanisms Based Horizontal Collaborative Fuzzy Clustering Algorithms for Unequal-Length Time Series
In clustering of unequal-length time series, how to deal with the unequal lengths is a crucial step. In this paper, the given unequal-length clustering problem is first changed int...
Blackbox Testing on Virtual Reality Gamelan Saron Using Equivalence Partition Method
Blackbox Testing on Virtual Reality Gamelan Saron Using Equivalence Partition Method
Pengujian Blackbox Pada Virtual Reality Gamelan Saron Menggunakan Metode Equivalence Partition. Dalam pengembangan sebuah aplikasi, testing pada aplikasi sangat penting sebelum apl...
Trauma and Memory in South Asian Partition Literature
Trauma and Memory in South Asian Partition Literature
The 1947 Partition of British India is the most traumatic event in South Asia, displacing over 14 million and killing almost a million people (Talbot & Singh, 2009). Literature...
Trans*versality, a hijra politics of knowledge, and Partition postmemory in Khushwant Singh’s Delhi: A Novel
Trans*versality, a hijra politics of knowledge, and Partition postmemory in Khushwant Singh’s Delhi: A Novel
In contrast with Train to Pakistan (1956), Khushwant Singh’s Delhi: A Novel (1990) has not received critical attention in light of India and Pakistan’s Partition. The diegetic narr...
Statistical modelling using product partition models
Statistical modelling using product partition models
Product partition models (PPMs) allow us to partition a set of objects into k sets. PPMs are a special case of Bayesian Partition models. They use partially exchangeable priors whe...

Back to Top