Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Lactate inhibits Ca2+-activated Ca2+-channel activity from skeletal muscle sarcoplasmic reticulum

View through CrossRef
Favero, Terence G., Anthony C. Zable, David Colter, and Jonathan J. Abramson. Lactate inhibits Ca2+-activated Ca2+-channel activity from skeletal muscle sarcoplasmic reticulum. J. Appl. Physiol. 82(2): 447–452, 1997.—Sarcoplasmic reticulum (SR) Ca2+-release channel function is modified by ligands that are generated during about of exercise. We have examined the effects of lactate on Ca2+- and caffeine-stimulated Ca2+release, [3H]ryanodine binding, and single Ca2+-release channel activity of SR isolated from rabbit white skeletal muscle. Lactate, at concentrations from 10 to 30 mM, inhibited Ca2+- and caffeine-stimulated [3H]ryanodine binding to and inhibited Ca2+- and caffeine-stimulated Ca2+release from SR vesicles. Lactate also inhibited caffeine activation of single-channel activity in bilayer reconstitution experiments. These findings suggest that intense muscle activity, which generates high concentrations of lactate, will disrupt excitation-contraction coupling. This may lead to decreases in Ca2+transients promoting a decline in tension development and contribute to muscle fatigue.
Title: Lactate inhibits Ca2+-activated Ca2+-channel activity from skeletal muscle sarcoplasmic reticulum
Description:
Favero, Terence G.
, Anthony C.
Zable, David Colter, and Jonathan J.
Abramson.
Lactate inhibits Ca2+-activated Ca2+-channel activity from skeletal muscle sarcoplasmic reticulum.
J.
Appl.
Physiol.
82(2): 447–452, 1997.
—Sarcoplasmic reticulum (SR) Ca2+-release channel function is modified by ligands that are generated during about of exercise.
We have examined the effects of lactate on Ca2+- and caffeine-stimulated Ca2+release, [3H]ryanodine binding, and single Ca2+-release channel activity of SR isolated from rabbit white skeletal muscle.
Lactate, at concentrations from 10 to 30 mM, inhibited Ca2+- and caffeine-stimulated [3H]ryanodine binding to and inhibited Ca2+- and caffeine-stimulated Ca2+release from SR vesicles.
Lactate also inhibited caffeine activation of single-channel activity in bilayer reconstitution experiments.
These findings suggest that intense muscle activity, which generates high concentrations of lactate, will disrupt excitation-contraction coupling.
This may lead to decreases in Ca2+transients promoting a decline in tension development and contribute to muscle fatigue.

Related Results

Poster 247: Muscle ERRγ Overexpression Mitigates the Muscle Atrophy after ACL injury
Poster 247: Muscle ERRγ Overexpression Mitigates the Muscle Atrophy after ACL injury
Objectives: Anterior cruciate ligament (ACL) reconstruction is the 6th most common orthopedic procedure performed in the United States (1,2). There is substantial evidence to sugge...
Computational analysis of Ca2+ dynamics in isolated cardiac mitochondria predicts two distinct modes of Ca2+ uptake
Computational analysis of Ca2+ dynamics in isolated cardiac mitochondria predicts two distinct modes of Ca2+ uptake
Key points Cytosolic, but not matrix, Mg2+ inhibits mitochondrial Ca2+ uptake through the Ca2+ uniporter (CU). The majority of mitochondrial Ca2+ uptake under physiological levels ...
Mechanism of Ca2+Transport by Sarcoplasmic Reticulum
Mechanism of Ca2+Transport by Sarcoplasmic Reticulum
AbstractThe sections in this article are:Structure of Sarcoplasmic Reticulum and Transverse TubulesStructure of Plasmalemma and T TubulesSarcoplasmic ReticulumJunction Between T Tu...
Ca2+ entry through Na(+)‐Ca2+ exchange can trigger Ca2+ release from Ca2+ stores in Na(+)‐loaded guinea‐pig coronary myocytes.
Ca2+ entry through Na(+)‐Ca2+ exchange can trigger Ca2+ release from Ca2+ stores in Na(+)‐loaded guinea‐pig coronary myocytes.
1. The ionized cytosolic calcium concentration ([Ca2+]i) was monitored in voltage‐clamped coronary myocytes at 36 degrees C and 2.5 mM [Ca2+]o using the Ca2+ indicator indo‐1. [Ca2...
Protein carbonylation causes sarcoplasmic reticulum Ca2+ overload by increasing intracellular Na+ level in ventricular myocytes
Protein carbonylation causes sarcoplasmic reticulum Ca2+ overload by increasing intracellular Na+ level in ventricular myocytes
Abstract Diabetes is commonly associated with an elevated level of reactive carbonyl species due to alteration of glucose and fatty acid metabolism. These metabolic changes...
Is contraction‐stimulated glucose transport feedforward regulated by Ca2+?
Is contraction‐stimulated glucose transport feedforward regulated by Ca2+?
New Findings What is the topic of this review? The article critically reviews the role of sarcoplasmic reticulum (SR) Ca2+ as a feedforward regulator of glucose uptake in skeletal ...
Na+/Ca2+ exchange current in ventricular myocytes of fish heart: contribution to sarcolemmal Ca2+ influx
Na+/Ca2+ exchange current in ventricular myocytes of fish heart: contribution to sarcolemmal Ca2+ influx
ABSTRACT Influx of extracellular Ca2+ plays a major role in the activation of contraction in fish cardiac cells. The relative contributions of Na+/Ca2+ exchange and ...
Are Cervical Ribs Indicators of Childhood Cancer? A Narrative Review
Are Cervical Ribs Indicators of Childhood Cancer? A Narrative Review
Abstract A cervical rib (CR), also known as a supernumerary or extra rib, is an additional rib that forms above the first rib, resulting from the overgrowth of the transverse proce...

Back to Top