Javascript must be enabled to continue!
Circadian Regulation of Metabolism: Commitment to Health and Diseases
View through CrossRef
Abstract
The circadian clock is a biological timekeeping system to govern temporal rhythms of the endocrine system and metabolism. The master pacemaker of biological rhythms is housed in the hypothalamic suprachiasmatic nucleus (SCN) where approximately 20,000 neurons exist and receive light stimulus as a predominant timed external cue (zeitgeber). The central SCN clock orchestrates molecular clock rhythms in peripheral tissues and coordinates circadian metabolic homeostasis at a systemic level. Accumulated evidence underscores an intertwined relationship between the circadian clock system and metabolism: the circadian clock provides daily dynamics of metabolic activity whereas the circadian clock activity is modulated by metabolic and epigenetic mechanisms. Disruption of circadian rhythms due to shift work and jet lag confounds the daily metabolic cycle, thereby increasing risks of various metabolic diseases, such as obesity and type 2 diabetes. Food intake serves as a powerful zeitgeber to entrain molecular clocks and circadian clock regulation of metabolic pathways, independently of light exposure to the SCN. Thus, the daily timing of food intake rather than the diet quantity and quality contributes to promoting health and preventing disease development through restoring circadian control of metabolic pathways. In this review, we discuss how the circadian clock dominates metabolic homeostasis and how chrononutritional strategies benefit metabolic health, summarizing the latest evidence from basic and translational studies.
Title: Circadian Regulation of Metabolism: Commitment to Health and Diseases
Description:
Abstract
The circadian clock is a biological timekeeping system to govern temporal rhythms of the endocrine system and metabolism.
The master pacemaker of biological rhythms is housed in the hypothalamic suprachiasmatic nucleus (SCN) where approximately 20,000 neurons exist and receive light stimulus as a predominant timed external cue (zeitgeber).
The central SCN clock orchestrates molecular clock rhythms in peripheral tissues and coordinates circadian metabolic homeostasis at a systemic level.
Accumulated evidence underscores an intertwined relationship between the circadian clock system and metabolism: the circadian clock provides daily dynamics of metabolic activity whereas the circadian clock activity is modulated by metabolic and epigenetic mechanisms.
Disruption of circadian rhythms due to shift work and jet lag confounds the daily metabolic cycle, thereby increasing risks of various metabolic diseases, such as obesity and type 2 diabetes.
Food intake serves as a powerful zeitgeber to entrain molecular clocks and circadian clock regulation of metabolic pathways, independently of light exposure to the SCN.
Thus, the daily timing of food intake rather than the diet quantity and quality contributes to promoting health and preventing disease development through restoring circadian control of metabolic pathways.
In this review, we discuss how the circadian clock dominates metabolic homeostasis and how chrononutritional strategies benefit metabolic health, summarizing the latest evidence from basic and translational studies.
Related Results
Abstract 1772: Circadian control of cell death in glioma cells treated with curcumin
Abstract 1772: Circadian control of cell death in glioma cells treated with curcumin
Abstract
Treatments based on the phytochemical curcumin have much potential for use in cancer treatments because of their effects on a wide variety of biological pat...
Changes in hepatic circadian genes and liver function caused by sleep deprivation
Changes in hepatic circadian genes and liver function caused by sleep deprivation
Abstract
Background. Sleep is an essential physiological activity for human beings, while sleep deprivation (SD) has become a public health concern and causes damage to mul...
Transcriptomal dissection of soybean circadian rhythmicity in two geographically, phenotypically and genetically distinct cultivars
Transcriptomal dissection of soybean circadian rhythmicity in two geographically, phenotypically and genetically distinct cultivars
Abstract
Background
In soybean, some circadian clock genes have been identified as loci for maturity traits. However, the effects of these genes on ...
Endogenous circadian rhythm in human motor activity uncoupled from circadian influences on cardiac dynamics
Endogenous circadian rhythm in human motor activity uncoupled from circadian influences on cardiac dynamics
The endogenous circadian pacemaker influences key physiologic functions, such as body temperature and heart rate, and is normally synchronized with the sleep/wake cycle. Epidemiolo...
Abstract 1798: The human mammary circadian transcriptome.
Abstract 1798: The human mammary circadian transcriptome.
Abstract
The circadian rhythm, a phenomenon present in all of Eukaryota and in some members of Prokaryota, describes the processes within an organism that fluctuate ...
Quantification of circadian rhythms in mammalian lung tissue snapshot data
Quantification of circadian rhythms in mammalian lung tissue snapshot data
Abstract
Healthy mammalian cells have a circadian clock, a gene regulatory network that allows them to schedule their physiological processes to optimal times of the day. W...
Chronotherapeutic and Epigenetic Regulation of Circadian Rhythms: Nicotinamide Adenine Dinucleotide-Sirtuin Axis
Chronotherapeutic and Epigenetic Regulation of Circadian Rhythms: Nicotinamide Adenine Dinucleotide-Sirtuin Axis
Circadian rhythms are endogenous oscillations coordinating the physiological and behavioral activities with the daily light-dark cycle and are controlled by molecular mechanisms. N...
Abstract 5303: Biomarker development for the evaluation of molecular circadian desynchrony in a single measurement.
Abstract 5303: Biomarker development for the evaluation of molecular circadian desynchrony in a single measurement.
Abstract
Most organisms possess an endogenous circadian clock which is responsible for the temporal organization of rhythmic biochemical and metabolic processes. At ...


