Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

The long road to steady state in gas exchange: metabolic and ventilatory responses to hypercapnia and hypoxia in Cuvier’s dwarf caiman

View through CrossRef
Animals with intermittent lung ventilation and those exposed to hypoxia and hypercapnia will experience fluctuations in the bodily O2 and CO2 stores, but the magnitude and temporal duration of these changes are not well understood amongst ectotherms. Using the changes in the respiratory exchange ratio (RER, CO2 excretion divided by O2 uptake) as a proxy for changes in bodily gas stores, we quantified time constants in response to hypoxia and hypercapnia in Cuvier’s dwarf caiman. We confirm distinct and prolonged changes in RER during and after exposure to hypoxia or hypercapnia. Gas exchange transients were evaluated in reference to predictions from a two-compartment model of CO2 exchange to quantify the effects of the levels of hypoxia and hypercapnia, duration of hypercapnia (30-300 min) and body temperature (23 vs 33°C). For hypercapnia, the transients could be adequately fitted by two-phase exponential functions and slow time constants (after 300 min hypercapnia) concurred reasonably well with modelling predictions. The slow time constants for the decays after hypercapnia were not affected by the level of hypercapnia, but they increased (especially at 23°C) with exposure time, possibly indicating a temporal and slow recruitment of tissues for CO2 storage. Elevated body temperature did not reduce the time constants in contrast to modelling predictions, however, likely reflecting similar ventilation rates in transients at 23 and 33°C. Our study reveals that attainment of steady state for gas exchange requires considerable time and this has important implications for designing experimental protocols when studying ventilatory control and conducting respirometry.
Title: The long road to steady state in gas exchange: metabolic and ventilatory responses to hypercapnia and hypoxia in Cuvier’s dwarf caiman
Description:
Animals with intermittent lung ventilation and those exposed to hypoxia and hypercapnia will experience fluctuations in the bodily O2 and CO2 stores, but the magnitude and temporal duration of these changes are not well understood amongst ectotherms.
Using the changes in the respiratory exchange ratio (RER, CO2 excretion divided by O2 uptake) as a proxy for changes in bodily gas stores, we quantified time constants in response to hypoxia and hypercapnia in Cuvier’s dwarf caiman.
We confirm distinct and prolonged changes in RER during and after exposure to hypoxia or hypercapnia.
Gas exchange transients were evaluated in reference to predictions from a two-compartment model of CO2 exchange to quantify the effects of the levels of hypoxia and hypercapnia, duration of hypercapnia (30-300 min) and body temperature (23 vs 33°C).
For hypercapnia, the transients could be adequately fitted by two-phase exponential functions and slow time constants (after 300 min hypercapnia) concurred reasonably well with modelling predictions.
The slow time constants for the decays after hypercapnia were not affected by the level of hypercapnia, but they increased (especially at 23°C) with exposure time, possibly indicating a temporal and slow recruitment of tissues for CO2 storage.
Elevated body temperature did not reduce the time constants in contrast to modelling predictions, however, likely reflecting similar ventilation rates in transients at 23 and 33°C.
Our study reveals that attainment of steady state for gas exchange requires considerable time and this has important implications for designing experimental protocols when studying ventilatory control and conducting respirometry.

Related Results

Cytokine control of systemic hypoxia tolerance in Drosophila
Cytokine control of systemic hypoxia tolerance in Drosophila
Summary Systemic hypoxia—reduction in oxygen supply to all tissues and organs—occurs in both physiological and pathological conditions in animals. Under these condition...
Exogenous Pyruvate Is Required for Cell Adaption to Chronic Hypoxia
Exogenous Pyruvate Is Required for Cell Adaption to Chronic Hypoxia
Hypoxia is a common feature in solid tumors due to the imbalance between the poor development of vascularization and rapid proliferation of tumor cells. Tumor hypoxia is associated...
Acute vs. Chronic vs. Cyclic Hypoxia: Their Differential Dynamics, Molecular Mechanisms, and Effects on Tumor Progression
Acute vs. Chronic vs. Cyclic Hypoxia: Their Differential Dynamics, Molecular Mechanisms, and Effects on Tumor Progression
Hypoxia has been shown to increase the aggressiveness and severity of tumor progression. Along with chronic and acute hypoxic regions, solid tumors contain regions of cycling hypox...
Comparisons of Pore Structure for Unconventional Tight Gas, Coalbed Methane and Shale Gas Reservoirs
Comparisons of Pore Structure for Unconventional Tight Gas, Coalbed Methane and Shale Gas Reservoirs
Extended abstract Tight sands gas, coalbed methane and shale gas are three kinds of typical unconventional natural gas. With the decrease of conventional oil and gas...
Effects of Stellate Ganglion Blockade on Muscle Blood Flow During Hypercapnia
Effects of Stellate Ganglion Blockade on Muscle Blood Flow During Hypercapnia
This study investigated the effects of a unilateral stellate ganglion block (SGB) on ipsilateral and contralateral masseter muscle blood flow during permissive hypercapnia. Eight m...

Back to Top