Javascript must be enabled to continue!
Validation of tropospheric ties at the test setup GNSS co-location site in Potsdam
View through CrossRef
<p>Atmospheric ties are induced by differences between the set-up of observing geodetic systems at co-location sites, are mainly attributed to frequency and position, and are usually quantified by zenith delay and gradient component offsets derived by weather models or in situ instuments.. Similar to local ties, they could be applied to combine datasets from several space geodetic techniques, thus contributing to the improvement of the realization of terrestrial reference frames (TRF). Theoretically, atmospheric ties are affected only by the height differences between antennas at the same site and meteorological conditions. Therefore, atmospheric ties could be determined analytically based on meteorological information from in situ measurements or weather models. However, there is often a discrepancy between the expected zenith delay differences and those estimated from geodetic analysis, potentially degrading a combined atmospheric ties solution should tight constraints be used. In this study, we set up a GNSS experiment campaign on the rooftop of a building in Telegrafernberg that offers unobscured data coverage for one month. We compared the estimated zenith delay and gradients from GNSS stations in this experiment, applying atmospheric ties from (1) meteorological data from the Global Pressure and Temperature model 3 (GPT3), (2) ERA5 reanalysis, and (3) in-situ measurements, as well as corrections derived from ray tracing (Potsdam Mapping Functions, PMF). The results show that atmospheric ties employing GPT3, ERA5, in-situ measurements, and ray tracing has an excellent and comparable performance in term of bias mitigation, but not in term of standard deviation, for zenith delay. Moreover, the unexpected bias in zenith delay was identified in the antenna with radome installation. A significantly large bias was identified in estimated gradients; the source of this discrepancy has been traced back to unmitigated multipath effects in this experiment.</p>
Title: Validation of tropospheric ties at the test setup GNSS co-location site in Potsdam
Description:
<p>Atmospheric ties are induced by differences between the set-up of observing geodetic systems at co-location sites, are mainly attributed to frequency and position, and are usually quantified by zenith delay and gradient component offsets derived by weather models or in situ instuments.
Similar to local ties, they could be applied to combine datasets from several space geodetic techniques, thus contributing to the improvement of the realization of terrestrial reference frames (TRF).
Theoretically, atmospheric ties are affected only by the height differences between antennas at the same site and meteorological conditions.
Therefore, atmospheric ties could be determined analytically based on meteorological information from in situ measurements or weather models.
However, there is often a discrepancy between the expected zenith delay differences and those estimated from geodetic analysis, potentially degrading a combined atmospheric ties solution should tight constraints be used.
In this study, we set up a GNSS experiment campaign on the rooftop of a building in Telegrafernberg that offers unobscured data coverage for one month.
We compared the estimated zenith delay and gradients from GNSS stations in this experiment, applying atmospheric ties from (1) meteorological data from the Global Pressure and Temperature model 3 (GPT3), (2) ERA5 reanalysis, and (3) in-situ measurements, as well as corrections derived from ray tracing (Potsdam Mapping Functions, PMF).
The results show that atmospheric ties employing GPT3, ERA5, in-situ measurements, and ray tracing has an excellent and comparable performance in term of bias mitigation, but not in term of standard deviation, for zenith delay.
Moreover, the unexpected bias in zenith delay was identified in the antenna with radome installation.
A significantly large bias was identified in estimated gradients; the source of this discrepancy has been traced back to unmitigated multipath effects in this experiment.
</p>.
Related Results
GNSS reflectometry for land remote sensing applications
GNSS reflectometry for land remote sensing applications
Soil moisture and vegetation biomass are two essential parameters from a scienti c and economical point of view. On one hand, they are key for the understanding of the hydrological...
Development of a cost efficient observation operator for GNSS tropospheric gradients
Development of a cost efficient observation operator for GNSS tropospheric gradients
<p>GNSS data collected at a single station allow the estimation of the Zenith Total Delay (ZTD) and tropospheric gradients. In order to make use of such data in numer...
GNSS Storm Nowcasting Demonstrator for Bulgaria
GNSS Storm Nowcasting Demonstrator for Bulgaria
Global Navigation Satellite System (GNSS) is an established atmospheric monitoring technique delivering water vapour data in near-real time with a latency of 90 min for operational...
GNSS Storm Nowcasting Demonstrator for Bulgaria
GNSS Storm Nowcasting Demonstrator for Bulgaria
Global Navigation Satellite System (GNSS) is an established atmospheric monitoring technique delivering water vapour data in near-real time with a latency of 90 min for operational...
GNSS-based orbit and geodetic parameter estimation by means of simulated GENESIS data
GNSS-based orbit and geodetic parameter estimation by means of simulated GENESIS data
The ESA GENESIS mission, which obtained green light at ESA's Council Meeting at Ministerial Level in November 2022 and which is expected to be launched in 2027, aims to significant...
Correcting geocenter motion in GNSS solutions by combining with satellite laser ranging data
Correcting geocenter motion in GNSS solutions by combining with satellite laser ranging data
Abstract
Geocenter motion in GNSS solutions is ill-defined because of the GNSS orbit modeling errors. Especially, the Z geocenter component derived from GNSS data is most...
Validation in Doctoral Education: Exploring PhD Students’ Perceptions of Belonging to Scaffold Doctoral Identity Work
Validation in Doctoral Education: Exploring PhD Students’ Perceptions of Belonging to Scaffold Doctoral Identity Work
Aim/Purpose: The aim of this article is to make a case of the role of validation in doctoral education. The purpose is to detail findings from three studies which explore PhD stude...
Routine Measurement of Water Vapour Using GNSS in the Framework of the Map-Io Project
Routine Measurement of Water Vapour Using GNSS in the Framework of the Map-Io Project
The “Marion Dufresne Atmospheric Program-Indian Ocean” (MAP-IO) project is a research program that aims to collect long-term atmospheric observations in the under-instrumented Indi...

