Javascript must be enabled to continue!
Interacting with Futuristic Topological Quantum Materials: A Potential Candidate for Spintronics Devices
View through CrossRef
Spintronics, also known as magneto-electronics or spin transport electronics, uses the magnetic moment of the electron due to intrinsic spin along with its electric charge. In the present review, the topological insulators (2D, 3D, and hydride) were discussed including the conducting edge of 2D topological insulators (TIs). Preparation methods of TIs along with fundamental properties, such as low power dissipation and spin polarized electrons, have been explored. Magnetic TIs have been extensively discussed and explained. Weyl phases, topological superconductors, and TIs are covered in this review. We have focused on creating novel spintronic gadgets based on TIs which have metallic topological exterior facades that are topologically defended and have an insulating bulk. In this review, topological phases are discussed as a potential candidate for novel quantum phenomena and new technological advances for fault-tolerant quantum computation in spintronics, low-power electronics, and as a host for Majorana fermions are elucidated. Room temperature stable magnetic skyrmions and anti-skyrmions in spintronics for next-generation memory/storage devices have been reported.
Title: Interacting with Futuristic Topological Quantum Materials: A Potential Candidate for Spintronics Devices
Description:
Spintronics, also known as magneto-electronics or spin transport electronics, uses the magnetic moment of the electron due to intrinsic spin along with its electric charge.
In the present review, the topological insulators (2D, 3D, and hydride) were discussed including the conducting edge of 2D topological insulators (TIs).
Preparation methods of TIs along with fundamental properties, such as low power dissipation and spin polarized electrons, have been explored.
Magnetic TIs have been extensively discussed and explained.
Weyl phases, topological superconductors, and TIs are covered in this review.
We have focused on creating novel spintronic gadgets based on TIs which have metallic topological exterior facades that are topologically defended and have an insulating bulk.
In this review, topological phases are discussed as a potential candidate for novel quantum phenomena and new technological advances for fault-tolerant quantum computation in spintronics, low-power electronics, and as a host for Majorana fermions are elucidated.
Room temperature stable magnetic skyrmions and anti-skyrmions in spintronics for next-generation memory/storage devices have been reported.
Related Results
Advanced frameworks for fraud detection leveraging quantum machine learning and data science in fintech ecosystems
Advanced frameworks for fraud detection leveraging quantum machine learning and data science in fintech ecosystems
The rapid expansion of the fintech sector has brought with it an increasing demand for robust and sophisticated fraud detection systems capable of managing large volumes of financi...
Advancements in Quantum Computing and Information Science
Advancements in Quantum Computing and Information Science
Abstract: The chapter "Advancements in Quantum Computing and Information Science" explores the fundamental principles, historical development, and modern applications of quantum co...
Integrating quantum neural networks with machine learning algorithms for optimizing healthcare diagnostics and treatment outcomes
Integrating quantum neural networks with machine learning algorithms for optimizing healthcare diagnostics and treatment outcomes
The rapid advancements in artificial intelligence (AI) and quantum computing have catalyzed an unprecedented shift in the methodologies utilized for healthcare diagnostics and trea...
Revolutionizing multimodal healthcare diagnosis, treatment pathways, and prognostic analytics through quantum neural networks
Revolutionizing multimodal healthcare diagnosis, treatment pathways, and prognostic analytics through quantum neural networks
The advent of quantum computing has introduced significant potential to revolutionize healthcare through quantum neural networks (QNNs), offering unprecedented capabilities in proc...
Quantum information outside quantum information
Quantum information outside quantum information
Quantum theory, as counter-intuitive as a theory can get, has turned out to make predictions of the physical world that match observations so precisely that it has been described a...
Quantum simulation of interacting fermions
Quantum simulation of interacting fermions
Fermions are basic building blocks in the standard model. Interactions among these elementary particles determine how they assemble and consequently form various states of matter i...
Progress of Two-Dimensional Magnetic Materials for Spin Orbit Torque
Progress of Two-Dimensional Magnetic Materials for Spin Orbit Torque
The rapid development of information technology has put forward higher requirements for the performance of information processing and storage devices. At the same time, with the co...
Quantum metamaterials: Applications in quantum information science
Quantum metamaterials: Applications in quantum information science
Metamaterials are a class of artificially engineered materials with periodic structures possessing exceptional properties not found in conventional materials. This definition can b...

