Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Cytochrome P450 Monooxygenases as Reporters for Circadian-Regulated Pathways      

View through CrossRef
Abstract Cytochrome P450 monooxygenases (P450s) play important roles in the synthesis of diverse secondary compounds in Arabidopsis (Arabidopsis thaliana). Comparison of four data sets analyzing seedlings harvested over a 2-d period of constant conditions after growth with varying photoperiods and thermocycles recorded a total of 98 P450 loci as circadian regulated for at least one of the four conditions. Here, we further describe the circadian-regulated pathways using, as reporters, individual P450 loci that are likely to be rate limiting in secondary metabolic pathways. Reverse transcription-polymerase chain reaction gel blot analyses have confirmed circadian regulation of P450s in phenylpropanoid, carotenoid, oxylipin, glucosinolate, and brassinosteroid biosyntheses and have shown that both P450 and non-P450 genes in the many branches of the phenylpropanoid pathway have similar circadian patterns of expression. In silico analyses of the subsets of coregulated promoters have identified overrepresented promoter elements in various biosynthetic pathway genes, including MYB and MYB4 elements that are significantly more abundant in promoters for the core and lignin sections of phenylpropanoid metabolism. Interactions with these elements important for circadian regulation do not involve the MYB transcription factor PAP1, as previously proposed, since the expression patterns of circadian-regulated P450s are the same in pap1-D mutant seedlings as in wild-type seedlings. Further analysis of circadian-regulated promoters in other biochemical pathways provides us with the opportunity to identify novel promoter motifs that might be important in P450 circadian regulation.
Title: Cytochrome P450 Monooxygenases as Reporters for Circadian-Regulated Pathways      
Description:
Abstract Cytochrome P450 monooxygenases (P450s) play important roles in the synthesis of diverse secondary compounds in Arabidopsis (Arabidopsis thaliana).
Comparison of four data sets analyzing seedlings harvested over a 2-d period of constant conditions after growth with varying photoperiods and thermocycles recorded a total of 98 P450 loci as circadian regulated for at least one of the four conditions.
Here, we further describe the circadian-regulated pathways using, as reporters, individual P450 loci that are likely to be rate limiting in secondary metabolic pathways.
Reverse transcription-polymerase chain reaction gel blot analyses have confirmed circadian regulation of P450s in phenylpropanoid, carotenoid, oxylipin, glucosinolate, and brassinosteroid biosyntheses and have shown that both P450 and non-P450 genes in the many branches of the phenylpropanoid pathway have similar circadian patterns of expression.
In silico analyses of the subsets of coregulated promoters have identified overrepresented promoter elements in various biosynthetic pathway genes, including MYB and MYB4 elements that are significantly more abundant in promoters for the core and lignin sections of phenylpropanoid metabolism.
Interactions with these elements important for circadian regulation do not involve the MYB transcription factor PAP1, as previously proposed, since the expression patterns of circadian-regulated P450s are the same in pap1-D mutant seedlings as in wild-type seedlings.
Further analysis of circadian-regulated promoters in other biochemical pathways provides us with the opportunity to identify novel promoter motifs that might be important in P450 circadian regulation.

Related Results

Abstract 1772: Circadian control of cell death in glioma cells treated with curcumin
Abstract 1772: Circadian control of cell death in glioma cells treated with curcumin
Abstract Treatments based on the phytochemical curcumin have much potential for use in cancer treatments because of their effects on a wide variety of biological pat...
Changes in hepatic circadian genes and liver function caused by sleep deprivation
Changes in hepatic circadian genes and liver function caused by sleep deprivation
Abstract Background. Sleep is an essential physiological activity for human beings, while sleep deprivation (SD) has become a public health concern and causes damage to mul...
Melatonin Activation by Human Cytochrome P450 Enzymes: A Comparison between Different Isozymes
Melatonin Activation by Human Cytochrome P450 Enzymes: A Comparison between Different Isozymes
Cytochrome P450 enzymes in the human body play a pivotal role in both the biosynthesis and the degradation of the hormone melatonin. Melatonin plays a key role in circadian rhythms...
Biochemical characteristics of purified beef liver NADPH–cytochrome P450 reductase
Biochemical characteristics of purified beef liver NADPH–cytochrome P450 reductase
AbstractNADPH–cytochrome P450 reductase, an obligatory component of the cytochrome P450 dependent monooxygenase system, was purified to electrophoretic homogeneity from beef liver ...
SELF-ESTEEM AND SELF-EFFICACY AMONG NEWSCASTERS AND NEWS REPORTERS
SELF-ESTEEM AND SELF-EFFICACY AMONG NEWSCASTERS AND NEWS REPORTERS
The present study aimedto investigaterelationship between self-esteem and self-efficacy among news casters and news reporters and to compare both groups in self-esteemand self-effi...
Endogenous circadian rhythm in human motor activity uncoupled from circadian influences on cardiac dynamics
Endogenous circadian rhythm in human motor activity uncoupled from circadian influences on cardiac dynamics
The endogenous circadian pacemaker influences key physiologic functions, such as body temperature and heart rate, and is normally synchronized with the sleep/wake cycle. Epidemiolo...
Abstract 1798: The human mammary circadian transcriptome.
Abstract 1798: The human mammary circadian transcriptome.
Abstract The circadian rhythm, a phenomenon present in all of Eukaryota and in some members of Prokaryota, describes the processes within an organism that fluctuate ...

Back to Top