Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Vibration-entrained and premovement activity in monkey primary somatosensory cortex

View through CrossRef
1. Primary somatosensory cortical (SI) neurons exhibit characteristic activity before the initiation of movements. This premovement activity (PMA) may result from centrally generated as well as from peripheral inputs. We examined PMA for 55 SI neurons (10, 13, 28, and 4 in areas 3a, 3b, 1, and 2, respectively) with activity that was entrained to vibrotactile stimulation (i.e., was temporally correlated with the stimulus). We sought to determine whether the temporal characteristics of vibration-entrained discharges would change throughout the reaction time period, and, if they did, whether these changes might be accounted for by central inputs. 2. Monkeys made wrist flexions and extensions in response to sinusoidal vibration (27, 57, or 127 Hz) of their palms. Vibration remained on until the animal moved at least 5 degrees from the initial hold position. Mean firing rate (MFR), a measure of the level of activity, was derived from the number of spikes per vibratory cycle. The correlation between the vibration and the neuronal firing was described by the mean phase (MP) of the vibratory cycle at which spikes occurred. The degree of entrainment was quantified as synchronicity (Synch), a statistical parameter that could change from 0 for no entrainment to 1 for responses at a constant phase. 3. Premovement MFR increases (activation) and decreases (suppression) were observed. Moreover, two changes in MFR often were observed for the same neuron (2-event PMA). Many MFR shifts, especially the first in the two-event PMA, preceded electromyographic (EMG) onset. The pre-EMG MFR shifts more often had the same sign both for flexion and extension movements rather than having opposite signs. However, with equal frequency, post-EMG PMA events had the same or opposite sign for different movement directions. We suggest that the pre-EMG PMA has an origin different from movement-related peripheral reafference. 4. Premovement activation was accompanied by shifts of MP corresponding to earlier responses to the ongoing vibratory stimulus and by decreases of response Synch. Premovement suppression was not associated with consistent shifts of MP and Synch. We suggest that during premovement activation, asynchronous (uncorrelated with vibration) signals are integrated with the vibratory input. These asynchronous signals may make neurons more likely to discharge and to do so earlier with respect to the vibratory stimulus. The asynchronous component may also disrupt the vibration-entrained activity pattern.(ABSTRACT TRUNCATED AT 400 WORDS)
Title: Vibration-entrained and premovement activity in monkey primary somatosensory cortex
Description:
1.
Primary somatosensory cortical (SI) neurons exhibit characteristic activity before the initiation of movements.
This premovement activity (PMA) may result from centrally generated as well as from peripheral inputs.
We examined PMA for 55 SI neurons (10, 13, 28, and 4 in areas 3a, 3b, 1, and 2, respectively) with activity that was entrained to vibrotactile stimulation (i.
e.
, was temporally correlated with the stimulus).
We sought to determine whether the temporal characteristics of vibration-entrained discharges would change throughout the reaction time period, and, if they did, whether these changes might be accounted for by central inputs.
2.
Monkeys made wrist flexions and extensions in response to sinusoidal vibration (27, 57, or 127 Hz) of their palms.
Vibration remained on until the animal moved at least 5 degrees from the initial hold position.
Mean firing rate (MFR), a measure of the level of activity, was derived from the number of spikes per vibratory cycle.
The correlation between the vibration and the neuronal firing was described by the mean phase (MP) of the vibratory cycle at which spikes occurred.
The degree of entrainment was quantified as synchronicity (Synch), a statistical parameter that could change from 0 for no entrainment to 1 for responses at a constant phase.
3.
Premovement MFR increases (activation) and decreases (suppression) were observed.
Moreover, two changes in MFR often were observed for the same neuron (2-event PMA).
Many MFR shifts, especially the first in the two-event PMA, preceded electromyographic (EMG) onset.
The pre-EMG MFR shifts more often had the same sign both for flexion and extension movements rather than having opposite signs.
However, with equal frequency, post-EMG PMA events had the same or opposite sign for different movement directions.
We suggest that the pre-EMG PMA has an origin different from movement-related peripheral reafference.
4.
Premovement activation was accompanied by shifts of MP corresponding to earlier responses to the ongoing vibratory stimulus and by decreases of response Synch.
Premovement suppression was not associated with consistent shifts of MP and Synch.
We suggest that during premovement activation, asynchronous (uncorrelated with vibration) signals are integrated with the vibratory input.
These asynchronous signals may make neurons more likely to discharge and to do so earlier with respect to the vibratory stimulus.
The asynchronous component may also disrupt the vibration-entrained activity pattern.
(ABSTRACT TRUNCATED AT 400 WORDS).

Related Results

Evaluating the Science to Inform the Physical Activity Guidelines for Americans Midcourse Report
Evaluating the Science to Inform the Physical Activity Guidelines for Americans Midcourse Report
Abstract The Physical Activity Guidelines for Americans (Guidelines) advises older adults to be as active as possible. Yet, despite the well documented benefits of physical a...
Perceptual choice and motor signals in mouse somatosensory cortex
Perceptual choice and motor signals in mouse somatosensory cortex
Somatosensory cortex activity relates both to sensation and movement, reflecting their intimate relationship, but the extent and nature of sensory-motor interactions in the somatos...
The “creatures” of the human cortical somatosensory system
The “creatures” of the human cortical somatosensory system
AbstractPenfield’s description of the “homunculus”, a “grotesque creature” with large lips and hands and small trunk and legs depicting the representation of body-parts within the ...
Superior colliculus modulates cortical coding of somatosensory information
Superior colliculus modulates cortical coding of somatosensory information
AbstractThe cortex modulates activity in superior colliculus via a direct projection. What is largely unknown is whether (and if so how) the superior colliculus modulates activity ...
Superior colliculus modulates cortical coding of somatosensory information
Superior colliculus modulates cortical coding of somatosensory information
AbstractThe cortex sends a direct projection to the superior colliculus. What is largely unknown is whether (and if so how) the superior colliculus modulates activity in the cortex...
On the Geometry of Somatosensory Representations in the Cortex
On the Geometry of Somatosensory Representations in the Cortex
AbstractIt is well-known that cortical areas specializing in the processing of somatosensory information from different parts of the body are arranged in an orderly manner along th...
Research on acoustic control of coupled vibration system of transducers using acoustic surface and topological defect structures
Research on acoustic control of coupled vibration system of transducers using acoustic surface and topological defect structures
<sec>How to regulate the sound waves in the coupled vibration system of complex power ultrasonic transducers and design high-performance transducer systems has always been an...

Back to Top