Javascript must be enabled to continue!
Accelerating AutoDock VINA with GPUs
View through CrossRef
AutoDock VINA is one of the most-used docking tools in the early stage of modern drug discovery. It uses a Monte-Carlo based iterated search method and multithreading parallelism scheme on multicore machines to improve docking accuracy and speed. However, virtual screening from huge compound databases is common for modern drug discovery, which puts forward a great demand for higher docking speed of AutoDock VINA. Therefore, we propose a fast method VINA-GPU, which expands the Monte-Carlo based docking lanes into thousands of ones coupling with a largely reduced number of search steps in each lane. Furthermore, we develop a heterogeneous OpenCL implementation of VINA-GPU that leverages thousands of computational cores of a GPU, and obtains a maximum of 403-fold acceleration on docking runtime when compared with a quad-threaded AutoDock VINA implementation. In addition, a heuristic function was fitted to determine the proper size of search steps in each lane for a convenient usage. The VINA-GPU code can be freely available at https://github.com/DeltaGroupNJUPT/VINA-GPU for academic usage.
American Chemical Society (ACS)
Title: Accelerating AutoDock VINA with GPUs
Description:
AutoDock VINA is one of the most-used docking tools in the early stage of modern drug discovery.
It uses a Monte-Carlo based iterated search method and multithreading parallelism scheme on multicore machines to improve docking accuracy and speed.
However, virtual screening from huge compound databases is common for modern drug discovery, which puts forward a great demand for higher docking speed of AutoDock VINA.
Therefore, we propose a fast method VINA-GPU, which expands the Monte-Carlo based docking lanes into thousands of ones coupling with a largely reduced number of search steps in each lane.
Furthermore, we develop a heterogeneous OpenCL implementation of VINA-GPU that leverages thousands of computational cores of a GPU, and obtains a maximum of 403-fold acceleration on docking runtime when compared with a quad-threaded AutoDock VINA implementation.
In addition, a heuristic function was fitted to determine the proper size of search steps in each lane for a convenient usage.
The VINA-GPU code can be freely available at https://github.
com/DeltaGroupNJUPT/VINA-GPU for academic usage.
Related Results
Accelerating AutoDock VINA with GPUs
Accelerating AutoDock VINA with GPUs
AutoDock Vina is one of the most popular molecular docking tools. In the latest benchmark CASF-2016 for comparative assessment of scoring functions, AutoDock Vina won the best dock...
Accelerating AutoDock VINA with GPUs
Accelerating AutoDock VINA with GPUs
AutoDock Vina is one of the most popular molecular docking tools. In the latest benchmark CASF-2016 for comparative assessment of scoring functions, AutoDock Vina won the best dock...
Vina-GPU 2.0:further accelerating AutoDock Vina and its derivatives with GPUs
Vina-GPU 2.0:further accelerating AutoDock Vina and its derivatives with GPUs
Modern drug discovery typically faces large virtual screens from huge compound databases where multiple docking tools are involved for meeting various real scenes or improving the ...
Vina-GPU 2.1: towards further optimizing docking speed and precision of AutoDock Vina and its derivatives
Vina-GPU 2.1: towards further optimizing docking speed and precision of AutoDock Vina and its derivatives
AbstractAutoDock Vina and its derivatives have established themselves as a prevailing pipeline for virtual screening in contemporary drug discovery. Our Vina-GPU method leverages t...
Improving the Accuracy of AutoDock Vina by Changing the Empirical Parameters
Improving the Accuracy of AutoDock Vina by Changing the Empirical Parameters
According to the previous benchmark, Autodock Vina (Vina) achieved a very high successful-docking rate, p ̂, but give a rather a low correlation coefficient, R, for binding affinit...
Improving Ligand-Ranking of AutoDock Vina by Changing the Empirical Parameters
Improving Ligand-Ranking of AutoDock Vina by Changing the Empirical Parameters
AutoDock Vina (Vina) achieved a very high docking-success rate, p ̂, but give a rather low correlation coefficient, R, for binding affinity with respect to experiments. This low co...
Accelerating AutoDock VINA with GPUs
Accelerating AutoDock VINA with GPUs
AutoDock VINA is one of the most-used docking tools in the early stage of modern drug discovery. It uses a Monte-Carlo based iterated search method and multithreading parallelism s...
Docking Molecular analysis of potential Drug Paritaprevir against Mycobacterium tuberculosis (Mtb)
Docking Molecular analysis of potential Drug Paritaprevir against Mycobacterium tuberculosis (Mtb)
AbstractBackgroundMycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, which kills 1.8 million annually. This is an infectious disease generally affects the lun...


