Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Partially decoupled magmatic and hydrothermal events in porphyry copper systems?

View through CrossRef
Porphyry Copper Systems (PCS) represent a significant source of metals, and will continue to play a key role in future with the development of green technology. Despite being one the most studied mineral systems, the primary controls on the ore tonnage of deposits (that varies up to 5 orders of magnitude in nature) remain poorly constrained. The Eocene Chuquicamata Intrusive Complex (CIC) in northern Chile hosts one of the world’s largest porphyry copper deposits and represent a perfect natural laboratory to explore the influence of timescales in controlling the formation and size of PCS.Here we investigate the tempo of multiple magmatic-hydrothermal events in the CIC applying molybdenite geochronology (Re-Os ID-NTIMS) and high precision zircon petrochronology (U-Pb CA-ID-TIMS geochronology in tandem with LA-ICPMS trace element composition). Preliminary geochronological results may suggest a partial decoupling of the magmatic and hydrothermal events. Zircon U-Pb geochronology results point to a multi-million-year protracted magmatic history with at least two discrete pulses separated by 500 kyrs. The hydrothermal event appears slightly younger than the youngest magmatic pulse and lasted for ca. 1 Myrs.The extensive duration of the mineralization scales with the behemothian size of the Chuquicamata deposit (more than 110 Mt of contained copper) and corresponds to predictions from numerical modelling of magma degassing. Interestingly, the apparent temporal decoupling between magmatism and hydrothermal activity at Chuquicamata suggests that syn-mineralization ore-forming magmas might not always intrude as dyke or stock at mineralization depth and can remain hidden at upper to mid-crustal depth. In the absence of high-precision geochronological data, this may bear consequences when assuming a direct genetic link between spatially associated porphyritic rocks and the mineralization.
Title: Partially decoupled magmatic and hydrothermal events in porphyry copper systems?
Description:
Porphyry Copper Systems (PCS) represent a significant source of metals, and will continue to play a key role in future with the development of green technology.
Despite being one the most studied mineral systems, the primary controls on the ore tonnage of deposits (that varies up to 5 orders of magnitude in nature) remain poorly constrained.
The Eocene Chuquicamata Intrusive Complex (CIC) in northern Chile hosts one of the world’s largest porphyry copper deposits and represent a perfect natural laboratory to explore the influence of timescales in controlling the formation and size of PCS.
Here we investigate the tempo of multiple magmatic-hydrothermal events in the CIC applying molybdenite geochronology (Re-Os ID-NTIMS) and high precision zircon petrochronology (U-Pb CA-ID-TIMS geochronology in tandem with LA-ICPMS trace element composition).
Preliminary geochronological results may suggest a partial decoupling of the magmatic and hydrothermal events.
Zircon U-Pb geochronology results point to a multi-million-year protracted magmatic history with at least two discrete pulses separated by 500 kyrs.
The hydrothermal event appears slightly younger than the youngest magmatic pulse and lasted for ca.
1 Myrs.
The extensive duration of the mineralization scales with the behemothian size of the Chuquicamata deposit (more than 110 Mt of contained copper) and corresponds to predictions from numerical modelling of magma degassing.
Interestingly, the apparent temporal decoupling between magmatism and hydrothermal activity at Chuquicamata suggests that syn-mineralization ore-forming magmas might not always intrude as dyke or stock at mineralization depth and can remain hidden at upper to mid-crustal depth.
In the absence of high-precision geochronological data, this may bear consequences when assuming a direct genetic link between spatially associated porphyritic rocks and the mineralization.

Related Results

Hydrothermal Alteration and Mineralization of Middle Jurassic Dexing Porphyry Cu‐Mo Deposit, Southeast China
Hydrothermal Alteration and Mineralization of Middle Jurassic Dexing Porphyry Cu‐Mo Deposit, Southeast China
AbstractThe Dexing deposit is located in a NE‐trending magmatic belt along the southeastern margin of the Yangtze Craton. It is the largest porphyry copper deposit in China, consis...
Mineral markers of porphyry processes: regional and local signatures of porphyry prospectivity
Mineral markers of porphyry processes: regional and local signatures of porphyry prospectivity
Porphyry-style mineralisation occurs chiefly as a consequence of the release of large volumes of metal-bearing aqueous brine during the cooling and crystallization of plutonic and ...
Tempo of magma degassing and the genesis of porphyry copper deposits
Tempo of magma degassing and the genesis of porphyry copper deposits
Porphyry deposits are copper-rich orebodies formed by precipitation of metal sulphides from hydrothermal fluids released from magmatic intrusions that cooled at depth within the Ea...
Effects of Magmatic-Hydrothermal Activities on Characteristic of Source Rocks from Beipiao Formation in the Jinyang Basin, NE China
Effects of Magmatic-Hydrothermal Activities on Characteristic of Source Rocks from Beipiao Formation in the Jinyang Basin, NE China
The Jinyang Basin is a typical volcanic-sedimentary basin, located in the southern peripheral area of the Songliao Basin. Hydrothermal activity is often closely related to the intr...

Back to Top