Javascript must be enabled to continue!
Differential Activation of Calpain-1 and Calpain-2 following Kainate-Induced Seizure Activity in Rats and Mice
View through CrossRef
Systemic injection of kainate produces repetitive seizure activity in both rats and mice. It also results in short-term synaptic modifications as well as delayed neurodegeneration. The signaling cascades involved in both short-term and delayed responses are not clearly defined. The calcium-dependent protease calpain is activated in various brain structures following systemic kainate injection, although the precise involvement of the two major brain calpain isoforms, calpain-1 and calpain-2, remains to be defined. It has recently been reported that calpain-1 and calpain-2 play opposite roles in NMDA receptor-mediated neuroprotection or neurodegeneration, with calpain-1 being neuroprotective and calpain-2 being neurodegenerative. In the present study, we determined the activation pattern of calpain-1 and calpain-2 by analyzing changes in levels of different calpain substrates, including spectrin, drebrin, and PTEN (phosphatase and tensin homolog; a specific calpain-2 substrate) in both rats, and wild-type and calpain-1 knock-out mice. The results indicate that, while calpain-2 is rapidly activated in pyramidal cells throughout CA1 and CA3, rapid calpain-1 activation is restricted to parvalbumin-positive and to a lesser extent CCK-positive, but not somatostatin-positive, interneurons. In addition, calpain-1 knock-out mice exhibit increased long-term neurodegeneration in CA1, reinforcing the notion that calpain-1 activation is neuroprotective.
Title: Differential Activation of Calpain-1 and Calpain-2 following Kainate-Induced Seizure Activity in Rats and Mice
Description:
Systemic injection of kainate produces repetitive seizure activity in both rats and mice.
It also results in short-term synaptic modifications as well as delayed neurodegeneration.
The signaling cascades involved in both short-term and delayed responses are not clearly defined.
The calcium-dependent protease calpain is activated in various brain structures following systemic kainate injection, although the precise involvement of the two major brain calpain isoforms, calpain-1 and calpain-2, remains to be defined.
It has recently been reported that calpain-1 and calpain-2 play opposite roles in NMDA receptor-mediated neuroprotection or neurodegeneration, with calpain-1 being neuroprotective and calpain-2 being neurodegenerative.
In the present study, we determined the activation pattern of calpain-1 and calpain-2 by analyzing changes in levels of different calpain substrates, including spectrin, drebrin, and PTEN (phosphatase and tensin homolog; a specific calpain-2 substrate) in both rats, and wild-type and calpain-1 knock-out mice.
The results indicate that, while calpain-2 is rapidly activated in pyramidal cells throughout CA1 and CA3, rapid calpain-1 activation is restricted to parvalbumin-positive and to a lesser extent CCK-positive, but not somatostatin-positive, interneurons.
In addition, calpain-1 knock-out mice exhibit increased long-term neurodegeneration in CA1, reinforcing the notion that calpain-1 activation is neuroprotective.
Related Results
Hydatid Disease of The Brain Parenchyma: A Systematic Review
Hydatid Disease of The Brain Parenchyma: A Systematic Review
Abstarct
Introduction
Isolated brain hydatid disease (BHD) is an extremely rare form of echinococcosis. A prompt and timely diagnosis is a crucial step in disease management. This ...
Calpain induces TNFα expression and cardiac dysfunction by IκB/NF-κB system in septic mice
Calpain induces TNFα expression and cardiac dysfunction by IκB/NF-κB system in septic mice
Objective
In septic models, recent studies showed that both myocardial calpain activity and TNFα expression increased, and inhibition of calpain downregulated myo...
Variable distributions of Ca(2+)-permeable and Ca(2+)-impermeable AMPA receptors on embryonic rat dorsal horn neurons
Variable distributions of Ca(2+)-permeable and Ca(2+)-impermeable AMPA receptors on embryonic rat dorsal horn neurons
1. By measuring the apparent reversal potential (aErev) of kainate- and alpha-amino-3-hydroxyl-5-methyl-4-isoxazole propionic acid (AMPA)-evoked currents associated with changes in...
Diagnostic role of serum prolactin level in different kinds of seizure and seizure-like episode in children: A hospital-based study
Diagnostic role of serum prolactin level in different kinds of seizure and seizure-like episode in children: A hospital-based study
Background: Serum prolactin level has been previously used in distinguishing epileptic seizure from non-epileptic seizure, as prolactin level usually rises following an epileptic s...
Calpain inhibition induces activation of the distinct signalling pathways and cell migration in human monocytes
Calpain inhibition induces activation of the distinct signalling pathways and cell migration in human monocytes
SummaryWe have recently reported that constitutively active calpain negatively regulates activation of the distinct signalling pathways and cell migration in human neutrophils. Her...
Evaluating the Science to Inform the Physical Activity Guidelines for Americans Midcourse Report
Evaluating the Science to Inform the Physical Activity Guidelines for Americans Midcourse Report
Abstract
The Physical Activity Guidelines for Americans (Guidelines) advises older adults to be as active as possible. Yet, despite the well documented benefits of physical a...
GW24-e2259 Evaluation of atherosclerosis in low density lipoprotein receptor defect mice by ultrasound biomicroscopy
GW24-e2259 Evaluation of atherosclerosis in low density lipoprotein receptor defect mice by ultrasound biomicroscopy
Objectives
Low density lipoprotein receptor defect mice model by transgenetic technology was used to detect atherosclerosis by Ultrasound Biology (UBM). And evalu...
Effects of 5,5′-diphenylhydantoin on the thyroid status in rats
Effects of 5,5′-diphenylhydantoin on the thyroid status in rats
Schröder-van der Elst JP, van der Heide D, van der Bent C, Kaptein E, Visser TJ, DiStefano JJ, Effects of 5,5′diphenylhydantoin on the thyroid status in rats. Eur J Endocrinol 1996...

