Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Measurement of Human Walking Movements by Using a Mobile Health App: Motion Sensor Data Analysis (Preprint)

View through CrossRef
BACKGROUND This study presents a new approach to measure and analyze the walking balance of humans by collecting motion sensor data in a smartphone. OBJECTIVE We aimed to develop a mobile health (mHealth) app that can measure the walking movements of human individuals and analyze the differences in the walking movements of different individuals based on their health conditions. A smartphone’s motion sensors were used to measure the walking movements and analyze the rotation matrix data by calculating the variation of each xyz rotation, which shows the variables in walking-related movement data over time. METHODS Data were collected from 3 participants, that is, 2 healthy individuals (1 female and 1 male) and 1 male with back pain. The participant with back pain injured his back during strenuous exercise but he did not have any issues in walking. The participants wore the smartphone in the middle of their waistline (as the center of gravity) while walking. They were instructed to walk straight at their own pace in an indoor hallway of a building. The walked a distance of approximately 400 feet. They walked for 2-3 minutes in a straight line and then returned to the starting location. A rotation vector in the smartphone, calculated by the rotation matrix, was used to measure the pitch, roll, and yaw angles of the human body while walking. Each xyz-rotation vector datum was recalculated to find the variation in each participant’s walking movement. RESULTS The male participant with back pain showed a diminished level of walking balance with a wider range of xyz-axis variations in the rotations compared to those of the healthy participants. The standard deviation in the xyz-axis of the male participant with back pain was larger than that of the healthy male participant. Moreover, the participant with back pain had the widest combined range of right-to-left and forward-to-backward motions. The healthy male participant showed smaller standard deviation while walking than the male participant with back pain and the female healthy participant, indicating that the healthy male participant had a well-balanced walking movement. The walking movement of the female healthy participant showed symmetry in the left-to-right (x-axis) and up-to-down (y-axis) motions in the x-y variations of rotation vectors, indicating that she had lesser bias in gait than the others. CONCLUSIONS This study shows that our mHealth app based on smartphone sensors and rotation vectors can measure the variations in the walking movements of different individuals. Further studies are needed to measure and compare walking movements by age, gender, as well as types of health problems or disease. This app can help in finding differences in gait in people with diseases that affect gait.
Title: Measurement of Human Walking Movements by Using a Mobile Health App: Motion Sensor Data Analysis (Preprint)
Description:
BACKGROUND This study presents a new approach to measure and analyze the walking balance of humans by collecting motion sensor data in a smartphone.
OBJECTIVE We aimed to develop a mobile health (mHealth) app that can measure the walking movements of human individuals and analyze the differences in the walking movements of different individuals based on their health conditions.
A smartphone’s motion sensors were used to measure the walking movements and analyze the rotation matrix data by calculating the variation of each xyz rotation, which shows the variables in walking-related movement data over time.
METHODS Data were collected from 3 participants, that is, 2 healthy individuals (1 female and 1 male) and 1 male with back pain.
The participant with back pain injured his back during strenuous exercise but he did not have any issues in walking.
The participants wore the smartphone in the middle of their waistline (as the center of gravity) while walking.
They were instructed to walk straight at their own pace in an indoor hallway of a building.
The walked a distance of approximately 400 feet.
They walked for 2-3 minutes in a straight line and then returned to the starting location.
A rotation vector in the smartphone, calculated by the rotation matrix, was used to measure the pitch, roll, and yaw angles of the human body while walking.
Each xyz-rotation vector datum was recalculated to find the variation in each participant’s walking movement.
RESULTS The male participant with back pain showed a diminished level of walking balance with a wider range of xyz-axis variations in the rotations compared to those of the healthy participants.
The standard deviation in the xyz-axis of the male participant with back pain was larger than that of the healthy male participant.
Moreover, the participant with back pain had the widest combined range of right-to-left and forward-to-backward motions.
The healthy male participant showed smaller standard deviation while walking than the male participant with back pain and the female healthy participant, indicating that the healthy male participant had a well-balanced walking movement.
The walking movement of the female healthy participant showed symmetry in the left-to-right (x-axis) and up-to-down (y-axis) motions in the x-y variations of rotation vectors, indicating that she had lesser bias in gait than the others.
CONCLUSIONS This study shows that our mHealth app based on smartphone sensors and rotation vectors can measure the variations in the walking movements of different individuals.
Further studies are needed to measure and compare walking movements by age, gender, as well as types of health problems or disease.
This app can help in finding differences in gait in people with diseases that affect gait.

Related Results

Playing Pregnancy: The Ludification and Gamification of Expectant Motherhood in Smartphone Apps
Playing Pregnancy: The Ludification and Gamification of Expectant Motherhood in Smartphone Apps
IntroductionLike other forms of embodiment, pregnancy has increasingly become subject to representation and interpretation via digital technologies. Pregnancy and the unborn entity...
Dynamic stochastic modeling for inertial sensors
Dynamic stochastic modeling for inertial sensors
Es ampliamente conocido que los modelos de error para sensores inerciales tienen dos componentes: El primero es un componente determinista que normalmente es calibrado por el fabri...
User Friendliness and Perioperative Guidance Benefits of a Cataract Surgery Education App: Randomized Controlled Trial
User Friendliness and Perioperative Guidance Benefits of a Cataract Surgery Education App: Randomized Controlled Trial
Background Cataract surgeries are among the most performed surgeries worldwide. A thorough patient education is essential to inform patients about the perioperative pro...

Back to Top