Javascript must be enabled to continue!
Study on High Temperature Properties of Yttrium-Modified Aluminide Coating on K444 Alloy by Chemical Vapor Deposition
View through CrossRef
This work aims to explore a method of improving the high-temperature oxidation resistance and thermal corrosion resistance of a hollow blade of gas turbine. The yttrium-modified aluminide coating was prepared on the surface of nickel-based superalloy K444 by chemical vapor deposition (CVD). The microstructure, high temperature oxidation resistance, and thermal corrosion resistance of the modified aluminide coating deposited at 950 °C, 1000 °C, and 1050 °C were compared. The microstructure and morphology of the coatings were observed and analyzed by XRD, SEM, and EDS. The results showed that adding yttrium and changing the deposition temperature had no effect on the double-layer structure (outer layer and diffusion layer) of the coating. Compared with adding yttrium, the deposition temperature had a greater effect on the coating thickness. When the deposition temperature was 1050 °C and the deposition time was 2 h, the thickness of the yttrium-modified aluminide coating increased by 33% compared to that of a single aluminide coating. The high temperature oxidation resistance and thermal corrosion resistance of the three groups of yttrium-modified aluminide coatings are better than that of the single aluminide coating. The resistance to high temperature oxidation and hot corrosion of the yttrium-modified aluminide coating deposited at 1050 °C was better than that of yttrium-modified aluminide coating deposited at 1000 °C, and both were better than that of the modified coating deposited at 950 °C. The higher the deposition temperature, the higher the yttrium content of the coating, the faster the film-forming speed of α-Al2O3, and the better the high temperature oxidation resistance and thermal corrosion resistance of the coating.
Title: Study on High Temperature Properties of Yttrium-Modified Aluminide Coating on K444 Alloy by Chemical Vapor Deposition
Description:
This work aims to explore a method of improving the high-temperature oxidation resistance and thermal corrosion resistance of a hollow blade of gas turbine.
The yttrium-modified aluminide coating was prepared on the surface of nickel-based superalloy K444 by chemical vapor deposition (CVD).
The microstructure, high temperature oxidation resistance, and thermal corrosion resistance of the modified aluminide coating deposited at 950 °C, 1000 °C, and 1050 °C were compared.
The microstructure and morphology of the coatings were observed and analyzed by XRD, SEM, and EDS.
The results showed that adding yttrium and changing the deposition temperature had no effect on the double-layer structure (outer layer and diffusion layer) of the coating.
Compared with adding yttrium, the deposition temperature had a greater effect on the coating thickness.
When the deposition temperature was 1050 °C and the deposition time was 2 h, the thickness of the yttrium-modified aluminide coating increased by 33% compared to that of a single aluminide coating.
The high temperature oxidation resistance and thermal corrosion resistance of the three groups of yttrium-modified aluminide coatings are better than that of the single aluminide coating.
The resistance to high temperature oxidation and hot corrosion of the yttrium-modified aluminide coating deposited at 1050 °C was better than that of yttrium-modified aluminide coating deposited at 1000 °C, and both were better than that of the modified coating deposited at 950 °C.
The higher the deposition temperature, the higher the yttrium content of the coating, the faster the film-forming speed of α-Al2O3, and the better the high temperature oxidation resistance and thermal corrosion resistance of the coating.
Related Results
Kinetics study of anodic electrophoretic deposition for polytetrafluoroethylene (PTFE) coatings on AZ31 magnesium alloy
Kinetics study of anodic electrophoretic deposition for polytetrafluoroethylene (PTFE) coatings on AZ31 magnesium alloy
AbstractElectrophoretic deposition (EPD) coating has become a hot topic due to its simple experiment, wide application, and wide material range. In this study, the PTFE coating was...
Effect of pressure on microstructure and properties of Ti–Al coating on titanium alloy surface
Effect of pressure on microstructure and properties of Ti–Al coating on titanium alloy surface
The effect of pressure on the microstructure and properties of Ti–Al coating on titanium alloy surface is studied. Ti–Al coating is prepared on the surface of titanium alloy by pre...
The effect of suspension parameters on the properties of the coating obtained by the slip method
The effect of suspension parameters on the properties of the coating obtained by the slip method
The development of modern gas turbine engineering imposes increasingly high requirements for the properties of the alloys used, associated with an increase in gas temperature befor...
The Lanthanides, Rare Earth Metals
The Lanthanides, Rare Earth Metals
AbstractThe lanthanides (or lanthanons) are a group of 15 elements of atomic numbers from 57 through 71 in which scandium (atomic number 21) and yttrium (atomic number 39) are some...
EFEKTIFITAS JENIS DESIKAN DAN KECEPATAN UDARA TERHADAP PENYERAPAN UAP AIR DI UDARA
EFEKTIFITAS JENIS DESIKAN DAN KECEPATAN UDARA TERHADAP PENYERAPAN UAP AIR DI UDARA
Dry air is widely used in many fields, but the excessive water vapor in the air will make some problem and should be minimized to get the required dry air. The purpose of th...
Wax Deposition Correlation-Application in Multiphase Wax Deposition Models
Wax Deposition Correlation-Application in Multiphase Wax Deposition Models
Abstract
The two most dominant factors in wax deposition are:Brownian diffusion of wax forming molecules toward and adhesion of wax crystals at the wall. The rate...
Synthesis of Yttrium Oxide Nanoneedles with Carbon Dioxide Carbonization
Synthesis of Yttrium Oxide Nanoneedles with Carbon Dioxide Carbonization
In this study, a CO2 carbonization method is introduced for the preparation of 1D yttrium oxide powders. Using YCl3 as the raw material, sodium hydroxide was initially used to comp...
MODELING OF QUALITY INDICATORS OF THE LEATHER COATING
MODELING OF QUALITY INDICATORS OF THE LEATHER COATING
The article is devoted to modeling the quality of leather coatings by optimizing the composition of the coating composition based on polymer film formers of different chemical natu...


