Javascript must be enabled to continue!
USP7 Deregulation Impairs S Phase Specific DNA Repair after Irradiation in Breast Cancer Cells
View through CrossRef
The ubiquitin specific protease 7 (USP7) is a deubiquitinating enzyme with numerous substrates. Aberrant expression of USP7 is associated with tumor progression. This study aims to investigate how a deregulated USP7 expression affects chromosomal instability and prognosis of breast cancer patients in silico and radiosensitivity and DNA repair in breast cancer cells in vitro. The investigations in silico were performed using overall survival and USP7 mRNA expression data of breast cancer patients. The results showed that a high USP7 expression was associated with increased chromosomal instability and decreased overall survival. The in vitro experiments were performed in a luminal and a triple-negative breast cancer cell line. Proliferation, DNA repair, DNA replication stress, and survival after USP7 overexpression or inhibition and irradiation were analyzed. Both, USP7 inhibition and overexpression resulted in decreased cellular survival, distinct radiosensitization and an increased number of residual DNA double-strand breaks in the S phase following irradiation. RAD51 recruitment and base incorporation were decreased after USP7 inhibition plus irradiation and more single-stranded DNA was detected. The results show that deregulation of USP7 activity disrupts DNA repair in the S phase by increasing DNA replication stress and presents USP7 as a promising target to overcome the radioresistance of breast tumors.
Title: USP7 Deregulation Impairs S Phase Specific DNA Repair after Irradiation in Breast Cancer Cells
Description:
The ubiquitin specific protease 7 (USP7) is a deubiquitinating enzyme with numerous substrates.
Aberrant expression of USP7 is associated with tumor progression.
This study aims to investigate how a deregulated USP7 expression affects chromosomal instability and prognosis of breast cancer patients in silico and radiosensitivity and DNA repair in breast cancer cells in vitro.
The investigations in silico were performed using overall survival and USP7 mRNA expression data of breast cancer patients.
The results showed that a high USP7 expression was associated with increased chromosomal instability and decreased overall survival.
The in vitro experiments were performed in a luminal and a triple-negative breast cancer cell line.
Proliferation, DNA repair, DNA replication stress, and survival after USP7 overexpression or inhibition and irradiation were analyzed.
Both, USP7 inhibition and overexpression resulted in decreased cellular survival, distinct radiosensitization and an increased number of residual DNA double-strand breaks in the S phase following irradiation.
RAD51 recruitment and base incorporation were decreased after USP7 inhibition plus irradiation and more single-stranded DNA was detected.
The results show that deregulation of USP7 activity disrupts DNA repair in the S phase by increasing DNA replication stress and presents USP7 as a promising target to overcome the radioresistance of breast tumors.
Related Results
Breast Carcinoma within Fibroadenoma: A Systematic Review
Breast Carcinoma within Fibroadenoma: A Systematic Review
Abstract
Introduction
Fibroadenoma is the most common benign breast lesion; however, it carries a potential risk of malignant transformation. This systematic review provides an ove...
Desmoid-Type Fibromatosis of The Breast: A Case Series
Desmoid-Type Fibromatosis of The Breast: A Case Series
Abstract
IntroductionDesmoid-type fibromatosis (DTF), also called aggressive fibromatosis, is a rare, benign, locally aggressive condition. Mammary DTF originates from fibroblasts ...
Nek2 Stabilization By Usp7 Leads to Activation of NF-Kb in Multiple Myeloma
Nek2 Stabilization By Usp7 Leads to Activation of NF-Kb in Multiple Myeloma
Abstract
NIMA (Never In Mitosis Gene A)-Related Kinase 2 (Nek2), a centrosomal Serine/Threonine kinase, is a key player in numerous malignancies. Overexpression of N...
Spanish Breast Cancer Research Group (GEICAM)
Spanish Breast Cancer Research Group (GEICAM)
This section provides current contact details and a summary of recent or ongoing clinical trials being coordinated by Spanish Breast Cancer Research Group (GEICAM). Clinical trials...
Abstract OI-1: OI-1 Decoding breast cancer predisposition genes
Abstract OI-1: OI-1 Decoding breast cancer predisposition genes
Abstract
Women with one or more first-degree female relatives with a history of breast cancer have a two-fold increased risk of developing breast cancer. This risk i...
International Breast Cancer Study Group (IBCSG)
International Breast Cancer Study Group (IBCSG)
This section provides current contact details and a summary of recent or ongoing clinical trials being coordinated by International Breast Cancer Study Group (IBCSG). Clinical tria...
Genome wide hypomethylation and youth-associated DNA gap reduction promoting DNA damage and senescence-associated pathogenesis
Genome wide hypomethylation and youth-associated DNA gap reduction promoting DNA damage and senescence-associated pathogenesis
Abstract
Background: Age-associated epigenetic alteration is the underlying cause of DNA damage in aging cells. Two types of youth-associated DNA-protection epigenetic mark...
Abstract 3493: Comprehensive analysis of the DNA repair enzyme signature in tumor and blood cells from head and neck cancer patients and correlation with clinical data from a 18-months follow-up study
Abstract 3493: Comprehensive analysis of the DNA repair enzyme signature in tumor and blood cells from head and neck cancer patients and correlation with clinical data from a 18-months follow-up study
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth leading cancer worldwide. It is often associated with a history of smoking/alcohol consumption or...

