Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Alantolactone Exhibits Antiproliferative and Apoptosis-Promoting Properties in Colon Cancer Model via Activation of the MAPK-JNK/c-Jun Signaling Pathway

View through CrossRef
Abstract Colorectal cancer (CRC) is one of the most common human malignancies in the digestive tract with high mortality. Alantolactone (ATL), as a plant-derived sesquiterpene lactone, has shown a variety of pharmacological activities, such as antibacterial, anti-inflammatory, anti-virus and so on. However, the exact molecular mechanism of ATL in colorectal cancer remains largely unknown. Here, we performed a study to explore the effect and mechanism of ATL on colorectal cancer. The CCK-8 assay, colony formation assay, Wound-healing and Transwell assays were performed to evaluate the cytotoxic effect, antiproliferative effect, anti-migratory and anti-invasive properties of ATL respectively. The xenograft tumor model was established in Balb/c mice to evaluate the anti-tumor effect. The expression levels of proteins involved the MAPK-JNK/c-Jun signaling pathway were measured by Western blot and RT-qPCR both in cells and tumor tissues. The results showed that ATL could inhibit the cells activities of various colon cancer cell lines. Moreover, ATL could induce HCT-116 cells nuclear pyknosis, mitochondrial membrane potential loss, G0/G1 phase arrest, as well as enhance the proportion of apoptosis cells and inhibit colony formation. The migration distance and invasion rate of cells were significantly reduced after treated with ATL. Additionally, in the xenograft model, ATL (50mg/kg) significantly decreased the tumor tumor volume and weight (p ˂ 0.001). For the anti-colon cancer mechanism, the ATL showed the anti-proliferative and pro-apoptosis effect by activating MAPK-JNK/c-Jun signaling pathway. In conclusion, ATL exhibits anti-proliferation and apoptosis-promoting potential in colon cancer via the activation of MAPK-JNK/c-Jun signaling pathway.
Title: Alantolactone Exhibits Antiproliferative and Apoptosis-Promoting Properties in Colon Cancer Model via Activation of the MAPK-JNK/c-Jun Signaling Pathway
Description:
Abstract Colorectal cancer (CRC) is one of the most common human malignancies in the digestive tract with high mortality.
Alantolactone (ATL), as a plant-derived sesquiterpene lactone, has shown a variety of pharmacological activities, such as antibacterial, anti-inflammatory, anti-virus and so on.
However, the exact molecular mechanism of ATL in colorectal cancer remains largely unknown.
Here, we performed a study to explore the effect and mechanism of ATL on colorectal cancer.
The CCK-8 assay, colony formation assay, Wound-healing and Transwell assays were performed to evaluate the cytotoxic effect, antiproliferative effect, anti-migratory and anti-invasive properties of ATL respectively.
The xenograft tumor model was established in Balb/c mice to evaluate the anti-tumor effect.
The expression levels of proteins involved the MAPK-JNK/c-Jun signaling pathway were measured by Western blot and RT-qPCR both in cells and tumor tissues.
The results showed that ATL could inhibit the cells activities of various colon cancer cell lines.
Moreover, ATL could induce HCT-116 cells nuclear pyknosis, mitochondrial membrane potential loss, G0/G1 phase arrest, as well as enhance the proportion of apoptosis cells and inhibit colony formation.
The migration distance and invasion rate of cells were significantly reduced after treated with ATL.
Additionally, in the xenograft model, ATL (50mg/kg) significantly decreased the tumor tumor volume and weight (p ˂ 0.
001).
For the anti-colon cancer mechanism, the ATL showed the anti-proliferative and pro-apoptosis effect by activating MAPK-JNK/c-Jun signaling pathway.
In conclusion, ATL exhibits anti-proliferation and apoptosis-promoting potential in colon cancer via the activation of MAPK-JNK/c-Jun signaling pathway.

Related Results

Abstract 920: COP1 E3 ligase regulates response to oncogenic MAPK pathway inhibition
Abstract 920: COP1 E3 ligase regulates response to oncogenic MAPK pathway inhibition
Abstract Oncogenically activated RAS-MAPK pathway is the driver of several cancers including the majority of non-small cell lung adenocarcinomas (NSCLC). RAS-MAPK pa...
ROLE OF HMGB1 IN DOXORUBICIN-INDUCED MYOCARDIAL APOPTOSIS AND ITS REGULATION PATHWAY
ROLE OF HMGB1 IN DOXORUBICIN-INDUCED MYOCARDIAL APOPTOSIS AND ITS REGULATION PATHWAY
Objectives Doxorubicin (DOX) is a widely used anti-tumour agent. The clinical application of the medication is limited by its side effect which can elicit myocard...
Podoplanin-mediated platelet activation promotes proliferation and invasion of colon cancer cells
Podoplanin-mediated platelet activation promotes proliferation and invasion of colon cancer cells
Abstract Background: Recent studies have shown that podoplanin is highly expressed in many tumors, suggesting that podoplanin may be related to the invasion and metastasis ...
Blocking Thyroid Hormones Induced MAPK Activation -Novel Target for Therapy In Myeloma
Blocking Thyroid Hormones Induced MAPK Activation -Novel Target for Therapy In Myeloma
Abstract Abstract 2964 Background: Basic/epidemiological/clinical data has established that thyroid hormones (T3/...
Optogenetic Control of Spine-Head JNK Reveals a Role in Dendritic Spine Regression
Optogenetic Control of Spine-Head JNK Reveals a Role in Dendritic Spine Regression
AbstractIn this study, we use an optogenetic inhibitor of c-Jun NH2-terminal kinase (JNK) in dendritic spine sub-compartments of rat hippocampal neurons. We show that JNK inhibitio...

Back to Top