Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Intelligent real-time prediction for shield machine position on the basis of BWO-LSTM-GRU

View through CrossRef
Abstract Due to the complexity and variability of shield machine working environment, it is very important to accurately control and regulate the position trajectory of shield machine. For that reason, an intelligent real-time prediction model of shield machine position based on BWO-LSTM-GRU (Beluga whale optimization-Long Short-term Memory-Gated recurrent unit) is proposed in this paper. Firstly, the real-time data of shield machine are processed based on Pearson correlation analysis, and the tunneling parameters presenting medium-strong correlation with the position parameters are filtered to obtain, which were used to be input variables for prediction models. Secondly, LSTM-GRU position prediction model was established separately for shield machine position parameters, and four hyperparameters of the model were optimized separately using BWO. Finally, BWO-LSTM-GRU position prediction models are used to realize the intelligent real-time prediction of the motion trajectories at four positions for shield machine. The simulation results indicate that the prediction deviation in the position prediction model is within 3 mm, and it can accurately complete the task of real-time prediction, providing real-time data support for shield machine drivers.
Title: Intelligent real-time prediction for shield machine position on the basis of BWO-LSTM-GRU
Description:
Abstract Due to the complexity and variability of shield machine working environment, it is very important to accurately control and regulate the position trajectory of shield machine.
For that reason, an intelligent real-time prediction model of shield machine position based on BWO-LSTM-GRU (Beluga whale optimization-Long Short-term Memory-Gated recurrent unit) is proposed in this paper.
Firstly, the real-time data of shield machine are processed based on Pearson correlation analysis, and the tunneling parameters presenting medium-strong correlation with the position parameters are filtered to obtain, which were used to be input variables for prediction models.
Secondly, LSTM-GRU position prediction model was established separately for shield machine position parameters, and four hyperparameters of the model were optimized separately using BWO.
Finally, BWO-LSTM-GRU position prediction models are used to realize the intelligent real-time prediction of the motion trajectories at four positions for shield machine.
The simulation results indicate that the prediction deviation in the position prediction model is within 3 mm, and it can accurately complete the task of real-time prediction, providing real-time data support for shield machine drivers.

Related Results

Multi-step intelligent prediction of shield machine position attitude on the basis of BWO-CNN-LSTM-GRU
Multi-step intelligent prediction of shield machine position attitude on the basis of BWO-CNN-LSTM-GRU
Abstract Realizing automatic control of shield machine tunneling attitude is a challenging problem. Realizing multi-step intelligent prediction for attitude and posi...
High-precision blood glucose prediction and hypoglycemia warning based on the LSTM-GRU model
High-precision blood glucose prediction and hypoglycemia warning based on the LSTM-GRU model
Objective: The performance of blood glucose prediction and hypoglycemia warning based on the LSTM-GRU (Long Short Term Memory - Gated Recurrent Unit) model was evaluated. Methods: ...
Real-Time Prediction of Wellbore Trajectory with a Dual-Input GRU(Di-GRU) Model
Real-Time Prediction of Wellbore Trajectory with a Dual-Input GRU(Di-GRU) Model
Abstract Accurate prediction of wellbore trajectory is crucial for precise directional drilling, yet it remains challenging due to the complex underground conditions...
Evaluation of Hotel Performance with Sentiment Analysis by Deep Learning Techniques
Evaluation of Hotel Performance with Sentiment Analysis by Deep Learning Techniques
The subject of sentiment analysis through social media sites has witnessed significant development due to the increasing reliance of people on social media in advertising and marke...
Daily streamflow forecasting by machine learning in Tra Khuc river in Vietnam
Daily streamflow forecasting by machine learning in Tra Khuc river in Vietnam
Precise streamflow prediction is crucial in the optimization of the distribution of water resources. This study develops the machine learning models by integrating recurrent gate u...
Prediction of COVID-19 Data Using an ARIMA-LSTM Hybrid Forecast Model
Prediction of COVID-19 Data Using an ARIMA-LSTM Hybrid Forecast Model
The purpose of this study is to study the spread of COVID-19, establish a predictive model, and provide guidance for its prevention and control. Considering the high complexity of ...
Research on CPI prediction based on LSTM model with double-layer attention mechanism
Research on CPI prediction based on LSTM model with double-layer attention mechanism
With the increasingly complex and changing economic and political environment at home and abroad, timely and accurate forecasting of the consumer price index (CPI) plays an importa...
Ionospheric TEC Prediction in China Based on the Multiple-Attention LSTM Model
Ionospheric TEC Prediction in China Based on the Multiple-Attention LSTM Model
The prediction of the total electron content (TEC) in the ionosphere is of great significance for satellite communication, navigation and positioning. This paper presents a multipl...

Back to Top