Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Radiation effects on LDPE/EVA blends

View through CrossRef
AbstractRadiation effects of low‐density polyethylene/ethylene‐vinyl acetate copolymer (LDPE/EVA) blends were discussed. EVA content in the LDPE/EVA blends was an enhancement effect on radiation crosslinking of LDPE/EVA blends, and the highest radiation crosslinking was obtained when the EVA content was reached at 30% when irradiated by γ‐ray in air. The phenomenon was discussed with the compatibility, morphology, and thermal properties of LDPE/EVA blends and found that the enhanced radiation crosslinking of the LDPE/EVA blends was proportional to the good compatibility, the increasing degree of the amorphous region's content of the LDPE/EVA blends, and the vinyl acetate content of EVA. We also found that the vinyl acetate of EVA in the blends is easily oxidized by γ‐ray irradiation in air. The possible radiation crosslinking and degradation mechanism of LDPE/EVA blends was discussed quantitatively with a novel method “step‐analysis” process of irradiated LDPE/EVA blends in the thermal gravimetric analysis (TGA) technique. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1296–1302, 2002
Title: Radiation effects on LDPE/EVA blends
Description:
AbstractRadiation effects of low‐density polyethylene/ethylene‐vinyl acetate copolymer (LDPE/EVA) blends were discussed.
EVA content in the LDPE/EVA blends was an enhancement effect on radiation crosslinking of LDPE/EVA blends, and the highest radiation crosslinking was obtained when the EVA content was reached at 30% when irradiated by γ‐ray in air.
The phenomenon was discussed with the compatibility, morphology, and thermal properties of LDPE/EVA blends and found that the enhanced radiation crosslinking of the LDPE/EVA blends was proportional to the good compatibility, the increasing degree of the amorphous region's content of the LDPE/EVA blends, and the vinyl acetate content of EVA.
We also found that the vinyl acetate of EVA in the blends is easily oxidized by γ‐ray irradiation in air.
The possible radiation crosslinking and degradation mechanism of LDPE/EVA blends was discussed quantitatively with a novel method “step‐analysis” process of irradiated LDPE/EVA blends in the thermal gravimetric analysis (TGA) technique.
© 2002 Wiley Periodicals, Inc.
J Appl Polym Sci 86: 1296–1302, 2002.

Related Results

Radiation effects on HDPE/EVA blends
Radiation effects on HDPE/EVA blends
AbstractIn this article, we discuss the radiation effects of high‐density polyethylene (HDPE)/ethylene–vinyl acetate (EVA) copolymer blends. In comparison with the low‐density poly...
Power Frequency Breakdown Properties of LDPE-Doped Inorganic Nanoparticles
Power Frequency Breakdown Properties of LDPE-Doped Inorganic Nanoparticles
Although polyethylene is widely used in electrical insulation, it does not possess dielectric properties. It is therefore desirable to develop insulation materials with excellent d...
Radiation effects on poly(propylene) (PP)/ethylene–vinyl acetate copolymer (EVA) blends
Radiation effects on poly(propylene) (PP)/ethylene–vinyl acetate copolymer (EVA) blends
AbstractRadiation effects on poly(propylene)/ethylene–vinyl acetate copolymer (PP/EVA) blends are discussed. Increasing the EVA content enhanced the crosslinking effect of radiatio...
The influence of nano-Fe on the electromagnetic shielding properties of nano-Fe/carbon fiber/LDPE composites
The influence of nano-Fe on the electromagnetic shielding properties of nano-Fe/carbon fiber/LDPE composites
AbstractNano-Fe/carbon fiber/ Low-density polyethylene (LDPE) composites were prepared by melt compounding. The electromagnetic shielding properties of nano-Fe/CF/LDPE composites a...
Structure and properties of PA 6/LDPE/Ionomer ternary blends and PA 6/ionomer binary blends
Structure and properties of PA 6/LDPE/Ionomer ternary blends and PA 6/ionomer binary blends
Ternary blends of PA 6/LDPE/Surlyn 9020 inonomer were prepared by melt mixing in a twin-screw extruder. Dynamic mechanical properties and thermal behavior of these blends were stud...
Tubular Film Blowing
Tubular Film Blowing
Tubular film blowing has long been used to produce biaxially oriented films using such thermoplastic polymers as low-density polyethylene (LDPE), high-density polyethylene (HDPE), ...
Secret of radiation protection and anti-static clothing
Secret of radiation protection and anti-static clothing
In the current era, electromagnetic radiation is everywhere. Every day electromagnetic radiation and static electricity caused by a variety of hazards. So, anti-electromagnetic rad...

Back to Top