Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Foam Extrusion

View through CrossRef
There are two processes used in the production of thermoplastic foams, namely, foam extrusion and structural foam injection molding (Benning 1969; Frisch and Saunders 1973). Foam extrusion, in which either chemical or physical blowing agents are used, is the focus of this chapter. Investigations of foam extrusion have dealt with the type and choice of process equipment (Collins and Brown 1973; Knau and Collins 1974; Senn and Shenefiel 1971; Wacehter 1970), the effect of die design (Fehn 1967; Han and Ma 1983b), the effect of blowing agents on foaming characteristics (Burt 1978, 1979; Han and Ma 1983b; Hansen 1962; Ma and Han 1983), and relationships between the foam density, cell geometry, and mechanical properties (Croft 1964; Kanakkanatt 1973; Mehta and Colombo 1976; Meinecke and Clark 1973). Chemical blowing agents are generally low-molecular-weight organic compounds, which decompose at and above a critical temperature and thereby release a gas (or gases), for example, nitrogen, carbon dioxide, or carbon monoxide. Examples of physical blowing agents include nitrogen, carbon dioxide, fluorocarbons (e.g., trichlorofluoromethane, dichlorodifluoromethane, and dichlorotetrafluoroethane), pentane, etc. They are introduced as a component of the polymer charge or under pressure into the molten polymer in the barrel of the extruder. It is extremely important to control the formation and growth of gas bubbles in order to produce foams of uniform quality (i.e., uniform cell structure). The fundamental questions one may ask in thermoplastic foam processing are: (1) What is the optimal concentration of blowing agent in order to have the minimum number of open cells and thus the best achievable mechanical property? (2) How many bubbles will be nucleated at the instant of nucleation? (3) What is the critical pressure at which bubbles nucleate in a molten polymer? (4) What are the processing–property relationships in foam extrusion and structural foam injection molding? Understandably, the answers to such questions depend, among many factors, on: (1) the solubility of the blowing agent in a molten polymer, (2) the diffusivity of the blowing agent in a molten polymer, (3) the concentration of the blowing agent in the mixture with a molten polymer, (4) the chemical structure of the polymers, (5) the initial pressure of the system, and (6) the equilibrium (or initial) temperature of the system.
Title: Foam Extrusion
Description:
There are two processes used in the production of thermoplastic foams, namely, foam extrusion and structural foam injection molding (Benning 1969; Frisch and Saunders 1973).
Foam extrusion, in which either chemical or physical blowing agents are used, is the focus of this chapter.
Investigations of foam extrusion have dealt with the type and choice of process equipment (Collins and Brown 1973; Knau and Collins 1974; Senn and Shenefiel 1971; Wacehter 1970), the effect of die design (Fehn 1967; Han and Ma 1983b), the effect of blowing agents on foaming characteristics (Burt 1978, 1979; Han and Ma 1983b; Hansen 1962; Ma and Han 1983), and relationships between the foam density, cell geometry, and mechanical properties (Croft 1964; Kanakkanatt 1973; Mehta and Colombo 1976; Meinecke and Clark 1973).
Chemical blowing agents are generally low-molecular-weight organic compounds, which decompose at and above a critical temperature and thereby release a gas (or gases), for example, nitrogen, carbon dioxide, or carbon monoxide.
Examples of physical blowing agents include nitrogen, carbon dioxide, fluorocarbons (e.
g.
, trichlorofluoromethane, dichlorodifluoromethane, and dichlorotetrafluoroethane), pentane, etc.
They are introduced as a component of the polymer charge or under pressure into the molten polymer in the barrel of the extruder.
It is extremely important to control the formation and growth of gas bubbles in order to produce foams of uniform quality (i.
e.
, uniform cell structure).
The fundamental questions one may ask in thermoplastic foam processing are: (1) What is the optimal concentration of blowing agent in order to have the minimum number of open cells and thus the best achievable mechanical property? (2) How many bubbles will be nucleated at the instant of nucleation? (3) What is the critical pressure at which bubbles nucleate in a molten polymer? (4) What are the processing–property relationships in foam extrusion and structural foam injection molding? Understandably, the answers to such questions depend, among many factors, on: (1) the solubility of the blowing agent in a molten polymer, (2) the diffusivity of the blowing agent in a molten polymer, (3) the concentration of the blowing agent in the mixture with a molten polymer, (4) the chemical structure of the polymers, (5) the initial pressure of the system, and (6) the equilibrium (or initial) temperature of the system.

Related Results

Foam Injection Test in the Siggins Field, Illinois
Foam Injection Test in the Siggins Field, Illinois
A pilot test in this tired, old field, confirmed the laboratory-derived conclusion that foam can do more than soften a beard or ruin a river. It can decrease the mobility of gas an...
Foam Flood in Yates Reservoir for Improving Oil Recovery
Foam Flood in Yates Reservoir for Improving Oil Recovery
Abstract The Yates reservoir is a major, multibillion-barrel legacy oil reservoir in West Texas discovered in 1926. Oil production mainly comes from the San Andres f...
The Adaptability Research of Steam Flooding Assisted by Nitrogen Foam in Henan Oilfield
The Adaptability Research of Steam Flooding Assisted by Nitrogen Foam in Henan Oilfield
Abstract With the further study on foaming agent performance, steam flooding assisted by nitrogen foam has been applied more widely. But the flexibility of this t...
Pore-Scale Observation of Solvent Based Foam During Heavy Oil Recovery
Pore-Scale Observation of Solvent Based Foam During Heavy Oil Recovery
Abstract Aqueous based foam injection has gained interest for conventional oil recovery in recent times. Foam can control the mobility ratio and improve the sweep ef...
Approximative approach to optimize concrete foaming concentration in two stage foaming
Approximative approach to optimize concrete foaming concentration in two stage foaming
The article presents the results of a study on foam concentration for the production of foam concrete using a two-stage foam introduction method. The research was conducted by eval...
Fundamentals of Extrusion
Fundamentals of Extrusion
Abstract This chapter introduces basic extrusion concepts, including types, processes, mechanics, and the principal variables and their effects on extrusion. The cha...
Foam Stability of Solvent/Surfactant/Heavy-Oil System Under Reservior Conditions
Foam Stability of Solvent/Surfactant/Heavy-Oil System Under Reservior Conditions
Abstract Solvent-based method is an important method for recovering heavy oil. In the case of solvent flooding, its sweeping efficiency might be adversely affected b...
Mechanism Study on Foam Flooding for Daqing Reservoirs After Polymer Flooding
Mechanism Study on Foam Flooding for Daqing Reservoirs After Polymer Flooding
Abstract Polymer flooding has been carried out widely in Daqing oilfield. The average oil recovery was 53% and the water cut was more than 90% after polymer flooding...

Back to Top