Javascript must be enabled to continue!
MINTbase: a framework for the interactive exploration of mitochondrial and nuclear tRNA fragments
View through CrossRef
Abstract
Motivation: It has been known that mature transfer RNAs (tRNAs) that are encoded in the nuclear genome give rise to short molecules, collectively known as tRNA fragments or tRFs. Recently, we reported that, in healthy individuals and in patients, tRFs are constitutive, arise from mitochondrial as well as from nuclear tRNAs, and have composition and abundances that depend on a person’s sex, population origin and race as well as on tissue, disease and disease subtype. Our findings as well as similar work by other groups highlight the importance of tRFs and presage an increase in the community’s interest in elucidating the roles of tRFs in health and disease.
Results: We created MINTbase, a web-based framework that serves the dual-purpose of being a content repository for tRFs and a tool for the interactive exploration of these newly discovered molecules. A key feature of MINTbase is that it deterministically and exhaustively enumerates all possible genomic locations where a sequence fragment can be found and indicates which fragments are exclusive to tRNA space, and thus can be considered as tRFs: this is a very important consideration given that the genomes of higher organisms are riddled with partial tRNA sequences and with tRNA-lookalikes whose aberrant transcripts can be mistaken for tRFs. MINTbase is extremely flexible and integrates and presents tRF information from multiple yet interconnected vantage points (‘vistas’). Vistas permit the user to interactively personalize the information that is returned and the manner in which it is displayed. MINTbase can report comparative information on how a tRF is distributed across all anticodon/amino acid combinations, provides alignments between a tRNA and multiple tRFs with which the user can interact, provides details on published studies that reported a tRF as expressed, etc. Importantly, we designed MINTbase to contain all possible tRFs that could ever be produced by mature tRNAs: this allows us to report on their genomic distributions, anticodon/amino acid properties, alignments, etc. while giving users the ability to at-will investigate candidate tRF molecules before embarking on focused experimental explorations. Lastly, we also introduce a new labeling scheme that is tRF-sequence-based and allows users to associate a tRF with a universally unique label (‘tRF-license plate’) that is independent of a genome assembly and does not require any brokering mechanism.
Availability and Implementation: MINTbase is freely accessible at http://cm.jefferson.edu/MINTbase/. Dataset submissions to MINTbase can be initiated at http://cm.jefferson.edu/MINTsubmit/.
Contact: isidore.rigoutsos@jefferson.edu
Supplementary information: Supplementary data are available at Bioinformatics online.
Oxford University Press (OUP)
Title: MINTbase: a framework for the interactive exploration of mitochondrial and nuclear tRNA fragments
Description:
Abstract
Motivation: It has been known that mature transfer RNAs (tRNAs) that are encoded in the nuclear genome give rise to short molecules, collectively known as tRNA fragments or tRFs.
Recently, we reported that, in healthy individuals and in patients, tRFs are constitutive, arise from mitochondrial as well as from nuclear tRNAs, and have composition and abundances that depend on a person’s sex, population origin and race as well as on tissue, disease and disease subtype.
Our findings as well as similar work by other groups highlight the importance of tRFs and presage an increase in the community’s interest in elucidating the roles of tRFs in health and disease.
Results: We created MINTbase, a web-based framework that serves the dual-purpose of being a content repository for tRFs and a tool for the interactive exploration of these newly discovered molecules.
A key feature of MINTbase is that it deterministically and exhaustively enumerates all possible genomic locations where a sequence fragment can be found and indicates which fragments are exclusive to tRNA space, and thus can be considered as tRFs: this is a very important consideration given that the genomes of higher organisms are riddled with partial tRNA sequences and with tRNA-lookalikes whose aberrant transcripts can be mistaken for tRFs.
MINTbase is extremely flexible and integrates and presents tRF information from multiple yet interconnected vantage points (‘vistas’).
Vistas permit the user to interactively personalize the information that is returned and the manner in which it is displayed.
MINTbase can report comparative information on how a tRF is distributed across all anticodon/amino acid combinations, provides alignments between a tRNA and multiple tRFs with which the user can interact, provides details on published studies that reported a tRF as expressed, etc.
Importantly, we designed MINTbase to contain all possible tRFs that could ever be produced by mature tRNAs: this allows us to report on their genomic distributions, anticodon/amino acid properties, alignments, etc.
while giving users the ability to at-will investigate candidate tRF molecules before embarking on focused experimental explorations.
Lastly, we also introduce a new labeling scheme that is tRF-sequence-based and allows users to associate a tRF with a universally unique label (‘tRF-license plate’) that is independent of a genome assembly and does not require any brokering mechanism.
Availability and Implementation: MINTbase is freely accessible at http://cm.
jefferson.
edu/MINTbase/.
Dataset submissions to MINTbase can be initiated at http://cm.
jefferson.
edu/MINTsubmit/.
Contact: isidore.
rigoutsos@jefferson.
edu
Supplementary information: Supplementary data are available at Bioinformatics online.
Related Results
A eukaryote without tRNA introns
A eukaryote without tRNA introns
One of the striking characteristics of eukaryotic genomes is the presence of three types of introns: spliceosomal introns, tRNA introns, and a unique intron in the XBP1 mRNA. Excep...
Posttranscriptional modifications in mitochondrial tRNA and its implication in mitochondrial translation and disease
Posttranscriptional modifications in mitochondrial tRNA and its implication in mitochondrial translation and disease
Abstract
A fundamental aspect of mitochondria is that they possess DNA and protein translation machinery. Mitochondrial DNA encodes 22 tRNAs that translate mitochond...
Mitochondria Fusion and Fission
Mitochondria Fusion and Fission
Abstract
Mitochondrial structural dynamics is regulated by the fusion or fission of these organelles. Recently published evidence indicates the ...
The Metabolic Enzyme Hexokinase 2 Localizes to the Nucleus in AML and Normal Hematopoietic Stem/Progenitor Cells to Maintain Stemness
The Metabolic Enzyme Hexokinase 2 Localizes to the Nucleus in AML and Normal Hematopoietic Stem/Progenitor Cells to Maintain Stemness
Abstract
Hematopoietic cells are arranged in a hierarchy where stem and progenitor cells differentiate into mature blood cells. Likewise, AML (Acute Myeloid Leukemia...
tRNA modification profiling reveals epitranscriptome regulatory networks inPseudomonas aeruginosa
tRNA modification profiling reveals epitranscriptome regulatory networks inPseudomonas aeruginosa
AbstractTransfer RNA (tRNA) modifications have emerged as critical posttranscriptional regulators of gene expression affecting diverse biological and disease processes. While there...
GW24-e3762 Role Of mitochondrial fission In cardiac microvascular endothelial cells after ischaemia/reperfusion
GW24-e3762 Role Of mitochondrial fission In cardiac microvascular endothelial cells after ischaemia/reperfusion
Objectives
This study is aimed to establish a simulated ischaemia/reperfusion (SI/R) model in cultured CMECs from adult rat, and investigate the role of mitochond...
Altered mitochondrial function in fibroblasts containing MELAS or MERRF mitochondrial DNA mutations
Altered mitochondrial function in fibroblasts containing MELAS or MERRF mitochondrial DNA mutations
A number of human diseases are caused by inherited mitochondrial DNA mutations. Two of these diseases, MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-lik...
Aberrant Nucleo-cytoplasmic Cross-Talk Results in Donor Cell mtDNA Persistence in Cloned Embryos
Aberrant Nucleo-cytoplasmic Cross-Talk Results in Donor Cell mtDNA Persistence in Cloned Embryos
Abstract
Mitochondrial DNA is an extranuclear genome normally maternally inherited through the oocyte. However, the use of nuclear transfer can result in both donor ...

