Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Trends on the Development of Hybrid Supercapacitor Electrodes from the Combination of Graphene and Polyaniline

View through CrossRef
The high demand for efficient energy devices leads to the rapid development of energy storage systems with excellent electrochemical properties, such as long life cycles, high cycling stability, and high power density. SC is postulated as a potential candidate to fulfill this demand. The combination of graphene and polyaniline can create SC electrodes with excellent electrical conductivity, high specific surface area, and high capacitance. The graphene/polyaniline hybrid electrodes represent an attractive means to overcome the major drawbacks of graphene or polyaniline non-hybrid (single) electrode materials. In this review article, the trend in the development of various graphene/polyaniline hybrid electrodes is summarized, which includes the zero-dimension graphene-quantum-dots/polyaniline hybrid, one-dimension graphene/polyaniline hybrid, two-dimension graphene/polyaniline hybrid, and three-dimension hydrogel-shaped graphene/polyaniline hybrid. Several strategies and approaches to enhance the capacitance value and cycling stability of graphene/polyaniline hybrid electrodes are discussed in this review article, such as the addition of transition metal oxides and metal-organic frameworks, and modification of graphene into functionalized-graphene. The performance of the electrodes prepared from the combination of graphene with other conducting polymers (i.e., polypyrrole, polythiophene, and polythiophene-derivatives) is also discussed.    
Title: Trends on the Development of Hybrid Supercapacitor Electrodes from the Combination of Graphene and Polyaniline
Description:
The high demand for efficient energy devices leads to the rapid development of energy storage systems with excellent electrochemical properties, such as long life cycles, high cycling stability, and high power density.
SC is postulated as a potential candidate to fulfill this demand.
The combination of graphene and polyaniline can create SC electrodes with excellent electrical conductivity, high specific surface area, and high capacitance.
The graphene/polyaniline hybrid electrodes represent an attractive means to overcome the major drawbacks of graphene or polyaniline non-hybrid (single) electrode materials.
In this review article, the trend in the development of various graphene/polyaniline hybrid electrodes is summarized, which includes the zero-dimension graphene-quantum-dots/polyaniline hybrid, one-dimension graphene/polyaniline hybrid, two-dimension graphene/polyaniline hybrid, and three-dimension hydrogel-shaped graphene/polyaniline hybrid.
Several strategies and approaches to enhance the capacitance value and cycling stability of graphene/polyaniline hybrid electrodes are discussed in this review article, such as the addition of transition metal oxides and metal-organic frameworks, and modification of graphene into functionalized-graphene.
The performance of the electrodes prepared from the combination of graphene with other conducting polymers (i.
e.
, polypyrrole, polythiophene, and polythiophene-derivatives) is also discussed.
   .

Related Results

Structured 3D Printed Dry ECG Electrodes Using Copper Based Filament
Structured 3D Printed Dry ECG Electrodes Using Copper Based Filament
Commercial wet Silver and Silver Chloride electrodes are used to monitor electrocardiogram (ECG) signals in numerous bioimpedance applications. These electrodes are frequently sing...
Preparation of Graphene Fibers
Preparation of Graphene Fibers
Graphene owns intriguing properties in electronic, thermal, and mechanic with unique two-dimension (2D) monolayer structure. The new member of carbon family has not only attracted ...
Review—Methods of Graphene Synthesis and Graphene-Based Electrode Material for Supercapacitor Applications
Review—Methods of Graphene Synthesis and Graphene-Based Electrode Material for Supercapacitor Applications
Energy is an unseen component of the world’s development and expansion. Energy storage, in addition to supplying energy from primary or secondary energy sources, such as renewables...
Characterization and preliminary application of top-gated graphene ion-sensitive field effect transistors
Characterization and preliminary application of top-gated graphene ion-sensitive field effect transistors
Graphene, a 2-dimensional material, has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, and high mechanical s...
3D graphene/fly ash waste material for hybrid supercapacitor electrode: specific capacitance analysis
3D graphene/fly ash waste material for hybrid supercapacitor electrode: specific capacitance analysis
AbstractThe performance of supercapacitor energy storage is depending on the type of the material that is used as supercapacitor electrode. Graphene has been widely used as the bas...
Exploring defects and induced magnetism in epitaxial graphene films
Exploring defects and induced magnetism in epitaxial graphene films
Graphene has been demonstrated to have unique properties not only in its virgin state but also by altering its environment through rotations in bilayer graphene, doping, and creati...
In-Situ Hydrogen-Induced Defects on the Single Layer CVD Growth Graphene
In-Situ Hydrogen-Induced Defects on the Single Layer CVD Growth Graphene
In this paper we present in-situ hydrogen-induced defects on the single layer CVD growth graphene sheets with reactive terminated edges and holes within the graphene matrix. The sa...

Back to Top