Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Abstract 3500: Nucleolytic processing of Topoisomerase 2 covalent complexes

View through CrossRef
Abstract The generation of elevated levels of enzyme: DNA covalent complexes is the key event in cell killing by many drugs targeting DNA topoisomerases. These agents, termed topoisomerase poisons generate protein linked DNA strand that block transcription and replication, leading to cell death. A critical step in the repair of topoisomerase mediated DNA damage is the removal of protein that is covalently attached to DNA. Several specialized repair enzymes, including Tdp1 (tyrosyl DNA phosphodiesterase I) and TTRAP (TRAF and TNF receptor-associated protein) can hydrolyze phosphotyrosyl: DNA linkages. We previously reported that yeast Tdp1 could hydrolyze 5′ as well as 3′ phosphotyrosyl linkages. Human Tdp1 can also hydrolyze 5′ phosphotyrosyl linkages, although the efficiency of the reaction with the human enzyme is much less than that seen with the yeast enzyme. Interestingly, the human enzyme processes adducts bearing a seven amino acid peptide linked to an oligonucleotide with greater efficiency than a 5′ biotin linked oligonucleotide, suggesting that the nature of the adduct at DNA ends influences Tdp1 reaction kinetics. We also used substrates derived from Top2 trapped covalent complexes to assess the ability of other DNA repair enzymes to remove peptides covalently bound to DNA. We found that the heterodimeric nuclease Slx1/Slx4 is able to remove Top2 peptides that are covalently bound to DNA. This result is consistent with our genetic data from yeast that a mutation in the subunit that includes the nuclease (Slx1) is hypersensitive to Top2 poisons, but not sensitive to other DNA damaging agents. Our results indicate that there are multiple pathways for repairing Top2 covalent complexes and suggest that the Slx1/Slx4 dependent pathway may be particularly relevant to repairing topoisomerase mediated damage at replication forks. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research; 2010 Apr 17-21; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2010;70(8 Suppl):Abstract nr 3500.
Title: Abstract 3500: Nucleolytic processing of Topoisomerase 2 covalent complexes
Description:
Abstract The generation of elevated levels of enzyme: DNA covalent complexes is the key event in cell killing by many drugs targeting DNA topoisomerases.
These agents, termed topoisomerase poisons generate protein linked DNA strand that block transcription and replication, leading to cell death.
A critical step in the repair of topoisomerase mediated DNA damage is the removal of protein that is covalently attached to DNA.
Several specialized repair enzymes, including Tdp1 (tyrosyl DNA phosphodiesterase I) and TTRAP (TRAF and TNF receptor-associated protein) can hydrolyze phosphotyrosyl: DNA linkages.
We previously reported that yeast Tdp1 could hydrolyze 5′ as well as 3′ phosphotyrosyl linkages.
Human Tdp1 can also hydrolyze 5′ phosphotyrosyl linkages, although the efficiency of the reaction with the human enzyme is much less than that seen with the yeast enzyme.
Interestingly, the human enzyme processes adducts bearing a seven amino acid peptide linked to an oligonucleotide with greater efficiency than a 5′ biotin linked oligonucleotide, suggesting that the nature of the adduct at DNA ends influences Tdp1 reaction kinetics.
We also used substrates derived from Top2 trapped covalent complexes to assess the ability of other DNA repair enzymes to remove peptides covalently bound to DNA.
We found that the heterodimeric nuclease Slx1/Slx4 is able to remove Top2 peptides that are covalently bound to DNA.
This result is consistent with our genetic data from yeast that a mutation in the subunit that includes the nuclease (Slx1) is hypersensitive to Top2 poisons, but not sensitive to other DNA damaging agents.
Our results indicate that there are multiple pathways for repairing Top2 covalent complexes and suggest that the Slx1/Slx4 dependent pathway may be particularly relevant to repairing topoisomerase mediated damage at replication forks.
Citation Format: {Authors}.
{Abstract title} [abstract].
In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research; 2010 Apr 17-21; Washington, DC.
Philadelphia (PA): AACR; Cancer Res 2010;70(8 Suppl):Abstract nr 3500.

Related Results

Topoisomerase Assays
Topoisomerase Assays
AbstractTopoisomerases are enzymes that play essential roles in DNA replication, transcription, chromosome segregation, and recombination. All cells have two major forms of DNA top...
Abstract 1658: Proteolytic processing pathways for topoisomerase covalent complexes
Abstract 1658: Proteolytic processing pathways for topoisomerase covalent complexes
Abstract DNA topoisomerase II (Top2) is the target of several important anti-cancer agents, including doxorubicin and etoposide. Clinically active Top2 agents, terme...
The topoisomerase II/condensin II axis silences transcription during germline specification in Caenorhabditis elegans
The topoisomerase II/condensin II axis silences transcription during germline specification in Caenorhabditis elegans
Abstract In Caenorhabditis elegans, the germline is specified via a preformation mechanism that relies on the PIE-1 protein's ability to globally silence mRNA transc...
Abstract 3580: Topoisomerase II mediated DNA damage generates unique classes of genome rearrangements
Abstract 3580: Topoisomerase II mediated DNA damage generates unique classes of genome rearrangements
Abstract Topoisomerase 2 (Top2) is the target of active anti-cancer agents such as etoposide and doxorubicin. These drugs interfere with the Top2 catalytic cycle and...
Analysis of topoisomerase II‐mediated DNA cleavage of the c‐myc gene during HL60 differentiation
Analysis of topoisomerase II‐mediated DNA cleavage of the c‐myc gene during HL60 differentiation
We have investigated the effect of mAMSA, a potent topoisomerase II inhibitor, on the c‐myc proto‐oncogene of the acute promyelocytic leukemia HL60 cell line during its differentia...
Systematic Studies on the Protocol and Criteria for Selecting a Covalent Docking Tool
Systematic Studies on the Protocol and Criteria for Selecting a Covalent Docking Tool
With the resurgence of drugs with covalent binding mechanisms, much attention has been paid to docking methods for the discovery of targeted covalent inhibitors. The existence of m...
Equilibrium Study and Biological Activity of Cu(II) with Polyvinyl alcohol(PVA) and Some Amino acids and DNA
Equilibrium Study and Biological Activity of Cu(II) with Polyvinyl alcohol(PVA) and Some Amino acids and DNA
This study presents the acid-base equilibrium of polyvinyl alcohol (PVA). The stability constant values of the binary and ternary complexes formed in solution among polyvinyl alcoh...
Gold Coordination Complexes as Anticancer Agents
Gold Coordination Complexes as Anticancer Agents
Metal ions are known to bind with nucleic acids and thereby alter their conformation and biological function. The metal ion-base interaction depends on the nature of both metal and...

Back to Top