Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Verification of SARS-CoV-2-Encoded small RNAs and contribution to Infection-Associated lung inflammation

View through CrossRef
AbstractSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus that causes coronavirus disease 2019 (COVID-19), the respiratory illness responsible for the COVID-19 pandemic. SARS-CoV-2 is a positive-stranded RNA virus belongs toCoronaviridaefamily. The viral genome of SARS-CoV-2 contains around 29.8 kilobase with a 5′-cap structure and 3′-poly-A tail, and shows 79.2% nucleotide identity with human SARS-CoV-1, which caused the 2002-2004 SARS outbreak. As the successor to SARS-CoV-1, SARS-CoV-2 now has circulated across the globe. There is a growing understanding of SARS-CoV-2 in virology, epidemiology, and clinical management strategies. In this study, we verified the existence of two 18-22 nt small viral RNAs (svRNAs) derived from the same precursor in human specimens infected with SARS-CoV-2, including nasopharyngeal swabs and formalin-fixed paraffin-embedded (FFPE) explanted lungs from lung transplantation of COVID-19 patients. We then simulated and confirmed the formation of these two SARS-CoV-2-Encoded small RNAs in human lung epithelial cells. And the potential pro-inflammatory effects of the splicing and maturation process of these two svRNAs in human lung epithelial cells were also explored. By screening cytokine storm genes and the characteristic expression profiling of COVID-19 in the explanted lung tissues and the svRNAs precursor transfected human lung epithelial cells, we found that the maturation of these two small viral RNAs contributed significantly to the infection associated lung inflammation, mainly via the activation of the CXCL8, CXCL11 and type I interferon signaling pathway. Taken together, we discovered two SARS-CoV-2-Encoded small RNAs and investigated the pro-inflammatory effects during their maturation in human lung epithelial cells, which might provide new insight into the pathogenesis and possible treatment options for COVID-19.
Title: Verification of SARS-CoV-2-Encoded small RNAs and contribution to Infection-Associated lung inflammation
Description:
AbstractSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus that causes coronavirus disease 2019 (COVID-19), the respiratory illness responsible for the COVID-19 pandemic.
SARS-CoV-2 is a positive-stranded RNA virus belongs toCoronaviridaefamily.
The viral genome of SARS-CoV-2 contains around 29.
8 kilobase with a 5′-cap structure and 3′-poly-A tail, and shows 79.
2% nucleotide identity with human SARS-CoV-1, which caused the 2002-2004 SARS outbreak.
As the successor to SARS-CoV-1, SARS-CoV-2 now has circulated across the globe.
There is a growing understanding of SARS-CoV-2 in virology, epidemiology, and clinical management strategies.
In this study, we verified the existence of two 18-22 nt small viral RNAs (svRNAs) derived from the same precursor in human specimens infected with SARS-CoV-2, including nasopharyngeal swabs and formalin-fixed paraffin-embedded (FFPE) explanted lungs from lung transplantation of COVID-19 patients.
We then simulated and confirmed the formation of these two SARS-CoV-2-Encoded small RNAs in human lung epithelial cells.
And the potential pro-inflammatory effects of the splicing and maturation process of these two svRNAs in human lung epithelial cells were also explored.
By screening cytokine storm genes and the characteristic expression profiling of COVID-19 in the explanted lung tissues and the svRNAs precursor transfected human lung epithelial cells, we found that the maturation of these two small viral RNAs contributed significantly to the infection associated lung inflammation, mainly via the activation of the CXCL8, CXCL11 and type I interferon signaling pathway.
Taken together, we discovered two SARS-CoV-2-Encoded small RNAs and investigated the pro-inflammatory effects during their maturation in human lung epithelial cells, which might provide new insight into the pathogenesis and possible treatment options for COVID-19.

Related Results

From SARS and MERS CoVs to SARS‐CoV‐2: Moving toward more biased codon usage in viral structural and nonstructural genes
From SARS and MERS CoVs to SARS‐CoV‐2: Moving toward more biased codon usage in viral structural and nonstructural genes
AbstractBackgroundSevere acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is an emerging disease with fatal outcomes. In this study, a fundamental knowledge gap question is to...
Performance characteristics of the VIDAS® SARS-COV-2 IgM and IgG serological assays
Performance characteristics of the VIDAS® SARS-COV-2 IgM and IgG serological assays
ABSTRACTThe COVID-19 pandemic, caused by the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), continues to spread worldwide. Serological testing for SARS-CoV-2-spe...
SARS-CoV-2 within-host diversity of human hosts and its implications for viral immune evasion
SARS-CoV-2 within-host diversity of human hosts and its implications for viral immune evasion
ABSTRACT Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is continuously evolving, bringing great challenges to the control of the virus. In the...
Pathomorphological changes in lung tissue of guinea pigs in SARS-CoV-2 infection model
Pathomorphological changes in lung tissue of guinea pigs in SARS-CoV-2 infection model
Introduction. The main characteristic of pathogenicity of SARS-CoV-2 virus is its ability to cause death in sensitive laboratory animals. The absence of lethal animal infection mod...
SARS-CoV-2 cell-to-cell infection is resistant to neutralizing antibodies
SARS-CoV-2 cell-to-cell infection is resistant to neutralizing antibodies
AbstractThe COVID-19 pandemic caused by SARS-CoV-2 has posed a global threat to human lives and economics. One of the best ways to determine protection against the infection is to ...
The emerging SARS‐CoV‐2 papain‐like protease: Its relationship with recent coronavirus epidemics
The emerging SARS‐CoV‐2 papain‐like protease: Its relationship with recent coronavirus epidemics
AbstractThe papain‐like protease (PLpro) is an important enzyme for coronavirus polyprotein processing, as well as for virus‐host immune suppression. Previous studies reveal that a...
Resistance of endothelial cells to SARS-CoV-2 infectionin vitro
Resistance of endothelial cells to SARS-CoV-2 infectionin vitro
AbstractRationaleThe secondary thrombotic/vascular clinical syndrome of COVID-19 suggests that SARS-CoV-2 infects not only respiratory epithelium but also the endothelium activatin...
EPD Electronic Pathogen Detection v1
EPD Electronic Pathogen Detection v1
Electronic pathogen detection (EPD) is a non - invasive, rapid, affordable, point- of- care test, for Covid 19 resulting from infection with SARS-CoV-2 virus. EPD scanning techno...

Back to Top