Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Identification of a bile acid-binding transcription factor in Clostridioides difficile using chemical proteomics

View through CrossRef
AbstractClostridioides difficile is a Gram-positive anaerobic bacterium that is the leading cause of hospital-acquired gastroenteritis in the US. In the gut milieu, C. difficile encounters microbiota-derived bile acids capable of inhibiting its growth, which are thought to be a mechanism of colonization resistance. While the levels of certain bile acids in the gut correlate with susceptibility to C. difficile infection, their molecular targets in C. difficile remain unknown. In this study, we sought to use chemical proteomics to identify bile acid-interacting proteins in C. difficile. Using photoaffinity bile acid probes and chemical proteomics, we identified a previously uncharacterized MerR family protein, CD3583 (now BapR), as a putative bile acid-sensing transcription regulator. Our data indicate that BapR binds and is stabilized by lithocholic acid (LCA) in C. difficile. Although loss of BapR did not affect C. difficile’s sensitivity to LCA, ΔbapR cells elongated more in the presence of LCA compared to wild-type cells. Transcriptomics revealed that BapR regulates the expression of the gene clusters mdeA-cd3573 and cd0618-cd0616, and cwpV, with the expression of the mdeA-cd3573 locus being specifically de-repressed in the presence of LCA in a BapR-dependent manner. Electrophoretic mobility shift assays revealed that BapR directly binds to the mdeA promoter region. Since mdeA is involved in amino acid-related sulfur metabolism and the mdeA-cd3573 locus encodes putative transporters, we propose that BapR senses a gastrointestinal tract-specific small molecule, LCA, as an environmental cue for metabolic adaptation.
Cold Spring Harbor Laboratory
Title: Identification of a bile acid-binding transcription factor in Clostridioides difficile using chemical proteomics
Description:
AbstractClostridioides difficile is a Gram-positive anaerobic bacterium that is the leading cause of hospital-acquired gastroenteritis in the US.
In the gut milieu, C.
difficile encounters microbiota-derived bile acids capable of inhibiting its growth, which are thought to be a mechanism of colonization resistance.
While the levels of certain bile acids in the gut correlate with susceptibility to C.
difficile infection, their molecular targets in C.
difficile remain unknown.
In this study, we sought to use chemical proteomics to identify bile acid-interacting proteins in C.
difficile.
Using photoaffinity bile acid probes and chemical proteomics, we identified a previously uncharacterized MerR family protein, CD3583 (now BapR), as a putative bile acid-sensing transcription regulator.
Our data indicate that BapR binds and is stabilized by lithocholic acid (LCA) in C.
difficile.
Although loss of BapR did not affect C.
difficile’s sensitivity to LCA, ΔbapR cells elongated more in the presence of LCA compared to wild-type cells.
Transcriptomics revealed that BapR regulates the expression of the gene clusters mdeA-cd3573 and cd0618-cd0616, and cwpV, with the expression of the mdeA-cd3573 locus being specifically de-repressed in the presence of LCA in a BapR-dependent manner.
Electrophoretic mobility shift assays revealed that BapR directly binds to the mdeA promoter region.
Since mdeA is involved in amino acid-related sulfur metabolism and the mdeA-cd3573 locus encodes putative transporters, we propose that BapR senses a gastrointestinal tract-specific small molecule, LCA, as an environmental cue for metabolic adaptation.

Related Results

Global evolutionary dynamics and resistome analysis of Clostridioides difficile ribotype 017
Global evolutionary dynamics and resistome analysis of Clostridioides difficile ribotype 017
AbstractClostridioides difficile PCR ribotype (RT) 017 ranks among the most successful strains of C. difficile in the world. In the past three decades, it has caused outbreaks on f...
Predictive value of random sample urine bile acids corrected by creatinine in liver disease
Predictive value of random sample urine bile acids corrected by creatinine in liver disease
Bile acids, in a random sample of urine, discriminated normal controls from liver disease, with a probability similar to fasting plasma bile acids (p < 0.01 and p < 0.001, de...
In Vitro Binding of Bile Acids by Rice Bran, Oat Bran, Wheat Bran, and Corn Bran
In Vitro Binding of Bile Acids by Rice Bran, Oat Bran, Wheat Bran, and Corn Bran
ABSTRACTThe in vitro bile acid binding by rice, oat, wheat, and corn brans was determined using a mixture of bile acids normally secreted in human bile at a physiological pH of 6.3...
A species-wide genetic atlas of antimicrobial resistance in Clostridioides difficile
A species-wide genetic atlas of antimicrobial resistance in Clostridioides difficile
AbstractAntimicrobial resistance (AMR) plays an important role in the pathogenesis and spread of Clostridioides difficile infection (CDI), the leading healthcare-related gastrointe...
The Mutant Eisai Hyperbilirubinemic Rat Is Resistant to Bile Acid-Induced Cholestasis and Cytotoxicity
The Mutant Eisai Hyperbilirubinemic Rat Is Resistant to Bile Acid-Induced Cholestasis and Cytotoxicity
We investigated bile flow and biliary excretion of bile acids in the Eisai hyperbilirubinemic rat, a Sprague–Dawley mutant rat with conjugated hyperbilirubinemia, using both ...
Clostridioides (Clostridium) difficile
Clostridioides (Clostridium) difficile
This chapter evaluates Clostridioides (Clostridium) difficile, a gram-positive anaerobic spore-forming bacillus found in colon flora. When C. difficile is induced to produce exotox...
A species-wide genetic atlas of antimicrobial resistance in Clostridioides difficile
A species-wide genetic atlas of antimicrobial resistance in Clostridioides difficile
Antimicrobial resistance (AMR) plays an important role in the pathogenesis and spread of Clostridioides difficile ...

Back to Top