Javascript must be enabled to continue!
Beal’s Conjecture - Counter Examples
View through CrossRef
In [1-4], proof for Beal’s Conjecture has been presented. Counter examples for Beal’s Conjecture are presented in this paper.
Title: Beal’s Conjecture - Counter Examples
Description:
In [1-4], proof for Beal’s Conjecture has been presented.
Counter examples for Beal’s Conjecture are presented in this paper.
Related Results
DISCOVERY ON BEAL CONJECTURE
DISCOVERY ON BEAL CONJECTURE
In this paper we give a proof for Beal's conjecture . Since the discovery of the proof of Fermat's last theorem by Andre Wiles, several questions arise on the correctness of Be...
The Galois Brumer–Stark conjecture for SL2(????3)-extensions
The Galois Brumer–Stark conjecture for SL2(????3)-extensions
In a previous work, we stated a conjecture, called the Galois Brumer–Stark conjecture, that generalizes the (abelian) Brumer–Stark conjecture to Galois extensions. We also proved t...
The Complexity of Mathematics
The Complexity of Mathematics
The strong Goldbach's conjecture states that every even integer greater than 2 can be written as the sum of two primes. The conjecture that all odd numbers greater than 7 are the s...
An Algebraic Approach to the Goldbach and Polignac Conjectures
An Algebraic Approach to the Goldbach and Polignac Conjectures
This paper will give both the necessary and sufficient conditions required to find a counter-example to the Goldbach Conjecture by using an algebraic approach where no knowledge of...
On aspherical presentations of groups
On aspherical presentations of groups
The Whitehead asphericity conjecture claims that if
⟨
A
‖
R
⟩
\langle \...
Critical Exponents, Colines, and Projective Geometries
Critical Exponents, Colines, and Projective Geometries
In [9, p. 469], Oxley made the following conjecture, which is a geometric analogue of a
conjecture of Lovász (see [1, p. 290]) about complete graphs.Conjecture 1.1.Let G be a rank...
C*-algebraic Bieberbach, Robertson, Lebedev-Milin, Zalcman, Krzyz and Corona Conjectures
C*-algebraic Bieberbach, Robertson, Lebedev-Milin, Zalcman, Krzyz and Corona Conjectures
We study C*-algebraic versions of following conjectures/theorems: (1) Bieberbach conjecture (de Branges theorem) (2) Robertson conjecture (3) Lebedev-Milin conjecture (4) Zalcman c...
DICKSON CONJECTURE PROOF
DICKSON CONJECTURE PROOF
In 1904, Dickson [6] stated a very important conjecture. Now people call it Dickson’s conjecture. In 1958, Schinzel and Sierpinski [3]generalized Dickson’s conjecture to the higher...

