Javascript must be enabled to continue!
Aurora B kinase is recruited to multiple discrete kinetochore and centromere regions in human cells
View through CrossRef
Aurora B kinase has a critical role in regulating attachments between kinetochores and spindle microtubules during mitosis. Early in mitosis, kinase activity at kinetochores is high to promote attachment turnover, and in later mitosis, activity decreases to ensure attachment stabilization. Aurora B localizes prominently to inner centromeres, and a population of the kinase is also detected at kinetochores. How Aurora B is recruited to and evicted from these regions to regulate kinetochore-microtubule attachments remains unclear. Here, we identified and investigated discrete populations of Aurora B at the centromere/kinetochore region. An inner centromere pool is recruited by Haspin phosphorylation of histone H3, and a kinetochore-proximal outer centromere pool is recruited by Bub1 phosphorylation of histone H2A. Finally, a third pool resides ~20 nm outside of the inner kinetochore protein CENP-C in early mitosis and does not require either the Bub1/pH2A/Sgo1 or Haspin/pH3 pathway for localization or activity. Our results suggest that distinct molecular pathways are responsible for Aurora B recruitment to centromeres and kinetochores.
Rockefeller University Press
Title: Aurora B kinase is recruited to multiple discrete kinetochore and centromere regions in human cells
Description:
Aurora B kinase has a critical role in regulating attachments between kinetochores and spindle microtubules during mitosis.
Early in mitosis, kinase activity at kinetochores is high to promote attachment turnover, and in later mitosis, activity decreases to ensure attachment stabilization.
Aurora B localizes prominently to inner centromeres, and a population of the kinase is also detected at kinetochores.
How Aurora B is recruited to and evicted from these regions to regulate kinetochore-microtubule attachments remains unclear.
Here, we identified and investigated discrete populations of Aurora B at the centromere/kinetochore region.
An inner centromere pool is recruited by Haspin phosphorylation of histone H3, and a kinetochore-proximal outer centromere pool is recruited by Bub1 phosphorylation of histone H2A.
Finally, a third pool resides ~20 nm outside of the inner kinetochore protein CENP-C in early mitosis and does not require either the Bub1/pH2A/Sgo1 or Haspin/pH3 pathway for localization or activity.
Our results suggest that distinct molecular pathways are responsible for Aurora B recruitment to centromeres and kinetochores.
Related Results
Chromosome biorientation requires Aurora B’s spatial separation from its outer kinetochore substrates but not its turnover at kinetochores
Chromosome biorientation requires Aurora B’s spatial separation from its outer kinetochore substrates but not its turnover at kinetochores
SummaryFor correct chromosome segregation in mitosis, sister kinetochores must interact with microtubules from opposite spindle poles (biorientation). For this, aberrant kinetochor...
Aurora-A Kinase: A Novel Target for the Immunotherapy Against Human Leukemias.
Aurora-A Kinase: A Novel Target for the Immunotherapy Against Human Leukemias.
Abstract
Aurora-A kinase (Aurora-A) is one of the serine/threonine kinase families, which is located on the long arm of chromosome 20q13, is mainly expressed in G2/M...
KNL1 facilitates phosphorylation of outer kinetochore proteins by promoting Aurora B kinase activity
KNL1 facilitates phosphorylation of outer kinetochore proteins by promoting Aurora B kinase activity
Aurora B kinase phosphorylates kinetochore proteins during early mitosis, increasing kinetochore–microtubule (MT) turnover and preventing premature stabilization of kinetochore–MT ...
Evidence that kinetochore microtubules in crane-fly spermatocytes disassemble during anaphase primarily at the poleward end
Evidence that kinetochore microtubules in crane-fly spermatocytes disassemble during anaphase primarily at the poleward end
ABSTRACT
Anaphase chromosome motion involves the disassembly of kinetochore microtubules. We wished to determine the site of kinetochore microtubule disassembly duri...
Temporal changes in Hec1 phosphorylation control kinetochore–microtubule attachment stability during mitosis
Temporal changes in Hec1 phosphorylation control kinetochore–microtubule attachment stability during mitosis
Precise control of the attachment strength between kinetochores and spindle microtubules is essential to preserve genomic stability. Aurora B kinase has been implicated in regulati...
The nucleosomes that mark centromere location on chromosomes old and new
The nucleosomes that mark centromere location on chromosomes old and new
Abstract
Proper segregation of chromosomes is an essential component of cell division. The centromere is the locus at which the kinetochore—the proteinaceous complex...
Abstract LB034: EWSR1, Ewing sarcoma breakpoint region 1, maintains centromere identity by binding to centromeric R-loops
Abstract LB034: EWSR1, Ewing sarcoma breakpoint region 1, maintains centromere identity by binding to centromeric R-loops
Abstract
The centromere DNA-kinetochore complex is the specialized chromatin structure that mediates chromosome attachment to microtubules and is required for high-f...
A first characterization of kinetochore proteins in the holocentric insect Spodoptera frugiperda
A first characterization of kinetochore proteins in the holocentric insect Spodoptera frugiperda
Abstract
Insects with holocentric chromosomes have a centromere spread all over their length and are devoid of the proteins CENP-A and CENP-C, suggesting a different kineto...

